Skip to main content

Measuring Dorsoventral Pattern and Morphogen Signaling Profiles in the Growing Neural Tube

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1863))

Abstract

Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alaynick WA, Jessell TM, Pfaff SL (2011) SnapShot: spinal cord development. Cell 146:178. https://doi.org/10.1016/j.cell.2011.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kicheva A, Bollenbach T, Ribeiro A, Valle HP, Lovell-Badge R, Episkopou V, Briscoe J (2014) Coordination of progenitor specification and growth in mouse and chick spinal cord. Science 329:1466–1468. https://doi.org/10.1126/science.

    Article  Google Scholar 

  3. Zagorski M, Tabata Y, Brandenberg N, Lutolf MP, Tkačik G, Bollenbach T, Briscoe J, Kicheva A (2017) Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science 356:1379–1383. https://doi.org/10.1126/science.aam5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445. https://doi.org/10.1016/S0092-8674(00)80853-3

    Article  CAS  PubMed  Google Scholar 

  5. Oosterveen T, Kurdija S, Alekseenko Z, Uhde CW, Bergsland M, Sandberg M, Andersson E, Dias JM, Muhr J, Ericson J (2012) Mechanistic differences in the transcriptional interpretation of local and long-range Shh Morphogen signaling. Dev Cell 23:1006–1019. https://doi.org/10.1016/j.devcel.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  6. Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page KM, Briscoe J, Ribes V (2012) Gene regulatory logic for reading the sonic hedgehog signaling gradient in the vertebrate neural tube. Cell 148:273–284. https://doi.org/10.1016/j.cell.2011.10.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peterson KA, Nishi Y, Ma W, Vedenko A, Shokri L, Zhang X, McFarlane M, Baizabal JM, Junker JP, van Oudenaarden A, Mikkelsen T, Bernstein BE, Bailey TL, Bulyk ML, Wong WH, McMahon AP (2012) Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes Dev 26:2802–2816. https://doi.org/10.1101/gad.207142.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Junker JP, Peterson KA, Nishi Y, Mao J, McMahon AP, van Oudenaarden A (2014) A predictive model of bifunctional transcription factor signaling during embryonic tissue patterning. Dev Cell 31:448–460. https://doi.org/10.1016/j.devcel.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  9. Cohen M, Kicheva A, Ribeiro A, Blassberg R, Page KM, Barnes CP, Briscoe J (2015) Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun 6:1–12. https://doi.org/10.1038/ncomms7709

    Article  CAS  Google Scholar 

  10. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  11. Gomez C, Özbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O (2008) Control of segment number in vertebrate embryos. Nature 454:335–339. https://doi.org/10.1038/nature07020

    Article  CAS  PubMed  Google Scholar 

  12. Stern CD, Jaques KF, Lim TM, Fraser SE, Keynes RJ (1991) Segmental lineage restrictions in the chick embryo spinal cord depend on the adjacent somites. Development 113:239–244

    CAS  PubMed  Google Scholar 

  13. Lippincott-Schwartz J, Presley JF, Zaal KJ, Hirschberg K, Miller CD, Ellenberg J (1998) Monitoring the dynamics and mobility of membrane proteins tagged with green fluorescent protein. Methods Cell Biol 58:261–281. https://doi.org/10.1016/S0091-679X(08)61960-3

    Article  Google Scholar 

  14. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Jülicher F, González-Gaitán M (2007) Kinetics of Morphogen gradient formation. Science 315:521–525. https://doi.org/10.1126/science.1135774

    Article  CAS  PubMed  Google Scholar 

  15. Kicheva A, Holtzer L, Wartlick O, Schmidt T, González-Gaitán M (2013) Quantitative imaging of morphogen gradients in drosophila imaginal discs. Cold Spring Harb Protoc 8:387–403. https://doi.org/10.1101/pdb.top074237

    Article  Google Scholar 

  16. Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability and nuclear dynamics of the Bicoid Morphogen gradient. Cell 130:141–152. https://doi.org/10.1016/j.cell.2007.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morrison AH, Scheeler M, Dubuis J, Gregor T (2012) Quantifying the Bicoid morphogen gradient in living fly embryos. Cold Spring Harb Protoc 7:398–406. https://doi.org/10.1101/pdb.top068536

    Article  Google Scholar 

  18. Dubuis JO, Samanta R, Gregor T (2013) Accurate measurements of dynamics and reproducibility in small genetic networks. Mol Syst Biol 9:639. https://doi.org/10.1038/msb.2012.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gregor T, Tank DW, Wieschaus EF, Bialek W (2007) Probing the limits to positional information. Cell 130:153–164. https://doi.org/10.1016/j.cell.2007.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  21. Behringer R, Gertsenstein M, Nagy K (2013) Manipulating the mouse embryo: a laboratory manual, fourth edition. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  22. Bronner-Fraser M (2011) Avian embryology, Methods cell biol, vol 87, 2nd edn, pp 1–409

    Google Scholar 

  23. Tkačik G, Dubuis JO, Petkova MD, Gregor T (2015) Positional information, positional error, and readout precision in morphogenesis: a mathematical framework. Genetics 199:39–59. https://doi.org/10.1534/genetics.114.171850

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Briscoe and T. Bollenbach for comments on the manuscript. Funding: IST Austria and European Research Council under European Union’s Horizon 2020 research and innovation programme (680037) (MZ, AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kicheva .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplementary File 1

Fiji script “maximum_projections.ijm”. (IJM 1 KB)

Supplementary File 2

Fiji script “profile_quantification.ijm”. (IJM 4 KB)

Supplementary File 3

Matlab script “data_analysis.m”. (M 22 KB)

Supplementary File 4

Test dataset: folders “Images” and “Profiles_FI”. (ZIP 69256 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zagorski, M., Kicheva, A. (2018). Measuring Dorsoventral Pattern and Morphogen Signaling Profiles in the Growing Neural Tube. In: Dubrulle, J. (eds) Morphogen Gradients. Methods in Molecular Biology, vol 1863. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8772-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8772-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8771-9

  • Online ISBN: 978-1-4939-8772-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics