Skip to main content

Measuring Glycolytic and Mitochondrial Fluxes in Endothelial Cells Using Radioactive Tracers

  • Protocol
  • First Online:
Book cover Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Endothelial cells (ECs) form the inner lining of the vascular network. Although they can remain quiescent for years, ECs exhibit high plasticity in both physiological and pathological conditions, when they need to rapidly form new blood vessels in a process called angiogenesis. EC metabolism recently emerged as an important driver of this angiogenic switch. The use of radioactive tracer substrates to assess metabolic flux rates in ECs has been essential for the discovery that fatty acid, glucose, and glutamine metabolism critically contribute to vessel sprouting. In the future, these assays will be useful as a tool for the characterization of pathological conditions in which deregulation of EC metabolism underlies and/or precedes the disease, but also for the identification of anti-angiogenic metabolic targets. This chapter describes in detail the radioactive tracer substrate assays that have been used for the determination of EC metabolic flux in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478. https://doi.org/10.1038/nrm2183

    Article  CAS  PubMed  Google Scholar 

  3. De Bock K, Georgiadou M, Schoors S et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663. https://doi.org/10.1016/j.cell.2013.06.037

    Article  CAS  PubMed  Google Scholar 

  4. Wilhelm K, Happel K, Eelen G et al (2016) FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216–220. https://doi.org/10.1038/nature16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doddaballapur A, Michalik KM, Manavski Y et al (2015) Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol 35:137–145. https://doi.org/10.1161/ATVBAHA.114.304277

    Article  CAS  PubMed  Google Scholar 

  6. Cantelmo AR, Conradi L-C, Brajic A et al (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell:1–48. https://doi.org/10.1016/j.ccell.2016.10.006

    Article  CAS  Google Scholar 

  7. Schoors S, De Bock K, Cantelmo AR et al (2014) Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab 19:37–48. https://doi.org/10.1016/j.cmet.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  8. De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18:634–647. https://doi.org/10.1016/j.cmet.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  9. Yu P, Wilhelm K, Dubrac A et al (2017) FGF-dependent metabolic control of vascular development. Nat Publ Group 545:224–228. https://doi.org/10.1038/nature22322

    Article  CAS  Google Scholar 

  10. Schoors S, Bruning U, Missiaen R et al (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:192–197. https://doi.org/10.1038/nature14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong BW, Wang X, Zecchin A et al (2017) The role of fatty acid β-oxidation in lymphangiogenesis. Nature 542:49–54. https://doi.org/10.1038/nature21028

    Article  CAS  PubMed  Google Scholar 

  12. Kim B, Li J, Jang C, Arany Z (2017) Glutamine fuels proliferation but not migration of endothelial cells. EMBO J 36:2321–2333. https://doi.org/10.15252/embj.201796436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang H, Vandekeere S, Kalucka J et al (2017) Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 36:2334–2352. https://doi.org/10.15252/embj.201695518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leopold JA, Walker J, Scribner AW et al (2003) Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 278:32100–32106. https://doi.org/10.1074/jbc.M301293200

    Article  CAS  PubMed  Google Scholar 

  15. Leopold JA, Dam A, Maron BA et al (2007) Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med 13:189–197. https://doi.org/10.1038/nm1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rohlenova K, Veys K, Miranda-Santos I, et al (2017) Endothelial cell metabolism in health and disease. Trends Cell Biol. doi: https://doi.org/10.1016/j.tcb.2017.10.010

    Article  CAS  Google Scholar 

  17. Eelen G, de Zeeuw P, Treps L et al (2018) Endothelial cell metabolism. Physiol Rev 98:3–58. https://doi.org/10.1152/physrev.00001.2017

    Article  PubMed  Google Scholar 

  18. Uebelhoer M, Iruela-Arispe ML (2016) Cross-talk between signaling and metabolism in the vasculature. Vasc Pharmacol 83:4–9. https://doi.org/10.1016/j.vph.2016.06.002

    Article  CAS  Google Scholar 

  19. Sawada N, Arany Z (2017) Metabolic regulation of angiogenesis in diabetes and aging. Physiology. doi: https://doi.org/10.1152/physiol.00039.2016;wgroup:string:Physio

  20. Kler RS, Sherratt HSA, Turnbull DM (1992) The measurement of mitochondrial β-oxidation by release of 3H2O from [9,10-3H]hexadecanoate: application to skeletal muscle and the use of inhibitors as models of metabolic disease. Biochem Med Metab Biol 47:145–156. https://doi.org/10.1016/0885-4505(92)90018-t

    Article  CAS  PubMed  Google Scholar 

  21. Drynan L, Quant PA, Zammit VA (1996) Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over β-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem J 317:791–795. https://doi.org/10.1042/bj3170791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clem B, Telang S, Clem A et al (2007) Small molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 6:A85–A85

    Article  Google Scholar 

  23. Lee Y-J, Kang I-J, Bünger R, Kang Y-H (2003) Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc Res 66:91–101

    Article  CAS  Google Scholar 

  24. Pandolfi PP, Sonati F, Rivi R et al (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14:5209–5215

    Article  CAS  Google Scholar 

  25. Leighton B, Curi R, Hussein A, Newsholme EA (1987) Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells. FEBS Lett 225:93–96

    Article  CAS  Google Scholar 

  26. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M (2015) Latent KSHV infected endothelial cells are glutamine addicted and require Glutaminolysis for survival. PLoS Pathog 11:e1005052. https://doi.org/10.1371/journal.ppat.1005052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Durante W, Liu X-M, Yates B et al (2017) Glutaminase 1 promotes the proliferation of endothelial cells via the induction of cyclin a. FASEB J 31:1065.4–1065.4. https://doi.org/10.1096/fj.1530-6860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrien De Bock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Veys, K., Alvarado-Diaz, A., De Bock, K. (2019). Measuring Glycolytic and Mitochondrial Fluxes in Endothelial Cells Using Radioactive Tracers. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics