Skip to main content

Simultaneous RNA–DNA FISH in Mouse Preimplantation Embryos

  • Protocol
  • First Online:
X-Chromosome Inactivation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1861))

Abstract

Fluorescent in situ hybridization (FISH) is a powerful cytogenetic technique that allows the visualization and quantification of RNA and DNA molecules in different cellular contexts. In general, FISH applications help to advance research, cytogenetics, and diagnostics. DNA FISH can be applied, for example, for gene mapping and for detecting genetic aberrations. RNA FISH provides information about gene expression. However, in cases where RNA and DNA molecules need to be detected in the same sample, the result is often compromised by the fact that the tissue sample is damaged due to the multitude of processing steps that are required for each application. In addition, the sequential application of RNA and DNA FISH protocols on the same sample is very time consuming. Here we describe a brief protocol that enables the combined and simultaneous detection of Xist RNA and centromeric DNA of chromosome 6 in mouse preimplantation embryos. In addition, we describe how to generate indirect-labeled probes starting from BACs. This protocol may be applied to any combination of RNA and DNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10):877–879. https://doi.org/10.1038/nmeth.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwon S (2013) Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules. BMB Rep 46(2):65–72

    Article  Google Scholar 

  3. Hart SM, Basu C (2009) Optimization of a digoxigenin-based immunoassay system for gene detection in Arabidopsis thaliana. J Biomol Tech 20(2):96–100

    PubMed  PubMed Central  Google Scholar 

  4. Said HM (2012) Biotin: biochemical, physiological and clinical aspects. Subcell Biochem 56:1–19. https://doi.org/10.1007/978-94-007-2199-9_1

    Article  CAS  PubMed  Google Scholar 

  5. Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132(3):259–275

    Article  CAS  Google Scholar 

  6. Brockdorff N, Turner BM (2015) Dosage compensation in mammals. Cold Spring Harb Perspect Biol 7(3):a019406. https://doi.org/10.1101/cshperspect.a019406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303(5658):644–649. https://doi.org/10.1126/science.1092727

    Article  CAS  PubMed  Google Scholar 

  8. Wutz A (2011) Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12(8):542–553. https://doi.org/10.1038/nrg3035

    Article  CAS  PubMed  Google Scholar 

  9. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303(5658):666–669. https://doi.org/10.1126/science.1092674

    Article  CAS  PubMed  Google Scholar 

  10. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11(2):156–166

    Article  CAS  Google Scholar 

  11. Takagi N, Sugawara O, Sasaki M (1982) Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85(2):275–286

    Article  CAS  Google Scholar 

  12. Takizawa T, Meaburn KJ, Misteli T (2008) The meaning of gene positioning. Cell 135(1):9–13. https://doi.org/10.1016/j.cell.2008.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol 463:297–308. https://doi.org/10.1007/978-1-59745-406-3_18

    Article  CAS  PubMed  Google Scholar 

  14. Namekawa SH, Lee JT (2011) Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos. Nat Protoc 6(3):270–284. https://doi.org/10.1038/nprot.2010.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartlett JM (2004) Fluorescence in situ hybridization: technical overview. Methods Mol Med 97:77–87. https://doi.org/10.1385/1-59259-760-2:077

    Article  CAS  PubMed  Google Scholar 

  16. Sommerlad C, Mehraein Y, Giersberg M, Marben K, Rieder H, Rehder H (2002) Formalin-fixed and paraffin-embedded tissue sections. In: Rautenstrauss B, Liehr TH (eds) FISH technology (springer lab manuals). Springer, Berlin, Heidelberg, New York, pp 149–161

    Google Scholar 

  17. Sarvari A, Naderi MM, Sadeghi MR, Akhondi MM (2013) A technique for facile and precise transfer of mouse embryos. Avicenna J Med Biotechnol 5(1):62–65

    PubMed  PubMed Central  Google Scholar 

  18. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory press, Cold Spring Harbor

    Google Scholar 

  19. Veuskens J, Hinnisdaels A, Mouras A (1993) In situ hybridization to plant metaphase chromosomes: radioactive and non-radioactive detection of repetitive and low copy number genes. In: Lindsey K (ed) Plant tissue culture manual, vol D8. Springer, New York, pp 1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy M. Baarends .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Magaraki, A., Loda, A., Gribnau, J., Baarends, W.M. (2018). Simultaneous RNA–DNA FISH in Mouse Preimplantation Embryos. In: Sado, T. (eds) X-Chromosome Inactivation. Methods in Molecular Biology, vol 1861. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8766-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8766-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8765-8

  • Online ISBN: 978-1-4939-8766-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics