Skip to main content

Using Force Spectroscopy to Probe Coiled-Coil Assembly and Membrane Fusion

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

Force spectroscopy allows the manipulation of single molecules and the characterization of their properties and interactions thereby rendering it a powerful tool for biological sciences. Force spectroscopy at the level of individual molecules requires force resolution in the piconewton regime as achieved by optical tweezers (OT), magnetic tweezers (MT), and atomic force microscopy (AFM) with AFM providing the largest force range from tenth of piconewton to several micronewton. In membrane probe spectroscopy the commonly used sharp cantilever tip is replaced by a lipid-coated glass sphere. This technique expands the scope of force spectroscopy to processes at and between lipid bilayers, like the formation of coiled coils between SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) proteins as well as subsequent membrane fusion. To this end, two solid-supported membranes equipped with SNARE proteins or fusion peptides are separately deposited on a flat glassy surface and on a micrometer glass sphere attached to the end of a tipless AFM cantilever. These two membranes are rapidly brought into contact until a defined force is reached. The AFM deflection readout is used to monitor the distance between the two bilayers, which allows to observe and identify fusion processes of the two lipid membranes, while the forces needed to separate the two surfaces give insights into the formation of SNARE complexes. By changing the contact pressure one can access fusion kinetics and to some extent reconstruct the energy landscape of membrane fusion. In this chapter we describe the preparation of membrane-coated colloidal probes attached to AFM cantilevers, experimental procedures, and necessary data analysis to perform membrane probe spectroscopy in the presence of fusogenic peptides or proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Let 56:930–933

    Article  CAS  Google Scholar 

  2. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  3. Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60:1438–1444

    Article  CAS  Google Scholar 

  4. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  CAS  Google Scholar 

  5. Lee GU, Kidwell DA, Colton RJ (1994) Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10:354–357

    Article  CAS  Google Scholar 

  6. Abdulreda MH, Bhalla A, Rico F, Berggren P-O, Chapman ER, Moy VT (2009) Pulling force generated by interacting SNAREs facilitates membrane hemifusion. Integr Biol 1:301–310

    Article  CAS  Google Scholar 

  7. Lorenz B, Keller R, Sunnick E, Geil B, Janshoff A (2010) Colloidal probe microscopy of membrane-membrane interactions: from ligand-receptor recognition to fusion events. Biophys Chem 150:54–63

    Article  CAS  Google Scholar 

  8. Lorenz B, Álvarez de Cienfuegos L, Oelkers M, Kriemen E, Brand C, Stephan M, Sunnick E, Yüksel D, Kalsani V, Kumar K, Werz DB, Janshoff A (2012) Model system for cell adhesion mediated by weak carbohydrate-carbohydrate interactions. J Am Chem Soc 134:3326–3329

    Article  CAS  Google Scholar 

  9. Pähler G, Lorenz B, Janshoff A (2013) Impact of peptide clustering on unbinding forces in the context of fusion mimetics. Biochem Biophys Res Commun 430:938–943

    Article  Google Scholar 

  10. Oelkers M, Witt H, Halder P, Jahn R, Janshoff A (2016) SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. Proc Natl Acad Sci U S A 113:13051–13056

    Article  CAS  Google Scholar 

  11. Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  CAS  Google Scholar 

  12. Aeffner S, Reusch T, Weinhausen B, Salditt T (2012) Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci U S A 109:E1609–E1618

    Article  CAS  Google Scholar 

  13. Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896

    Article  CAS  Google Scholar 

  14. Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106

    Article  CAS  Google Scholar 

  15. Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673–676

    Article  CAS  Google Scholar 

  16. Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R (2012) Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–1584

    Article  CAS  Google Scholar 

  17. Janshoff A, Neitzert N, Oberdörfer Y, Fuchs H (2000) Force spectroscopy of molecular systems—single molecule spectroscopy of polymers and biomolecules. Angew Chem Int Ed 15:3212–3237

    Article  Google Scholar 

  18. Bizzarri AR, Cannistraro S (2010) The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem Soc Rev 39:734–749

    Article  CAS  Google Scholar 

  19. Noy A (2011) Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr Opin Chem Biol 15:710–718

    Article  CAS  Google Scholar 

  20. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  21. Noy A (ed) (2008) Handbook of molecular force spectroscopy. Springer, New York

    Google Scholar 

  22. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  Google Scholar 

  23. Picas L, Rico F, Scheuring S (2012) Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys J 102:L01–L03

    Article  CAS  Google Scholar 

  24. Butt H-J, Franz V (2002) Rupture of molecular thin films observed in atomic force microscopy. I. Theory. Phys Rev E 66:031601

    Article  Google Scholar 

  25. Marsh D (2013) Handbook of lipid bilayers. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Book  Google Scholar 

  26. Hernandez JM, Kreutzberger AJB, Kiessling V, Tamm LK, Jahn R (2014) Variable cooperativity in SNARE-mediated membrane fusion. Proc Natl Acad Sci U S A 111:12037–12042

    Article  CAS  Google Scholar 

  27. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528

    Article  CAS  Google Scholar 

  28. Kuhlmann JW, Junius M, Diederichsen U, Steinem C (2017) SNARE-mediated single-vesicle fusion events with supporting and freestanding lipid membranes. Biophys J 112:2348–2356

    Article  CAS  Google Scholar 

  29. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  30. Jaschke M, Butt H-J (1995) Height calibration of optical lever atomic force microscopes by simple laser interferometry. Rev Sci Instrum 66:1258–1259

    Article  CAS  Google Scholar 

  31. Richter RP, Bérat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505

    Article  CAS  Google Scholar 

  32. Lorenz B (2012) A Force Spectroscopy Setup to Mimic Cellular Interaction Processes. Dissertation, University of Göttingen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Janshoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Witt, H., Janshoff, A. (2019). Using Force Spectroscopy to Probe Coiled-Coil Assembly and Membrane Fusion. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics