Skip to main content

Studying Munc18:Syntaxin Interactions Using Small-Angle Scattering

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

  • 1611 Accesses

Abstract

The interaction between the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin (Sx) and regulatory partner Sec/Munc18 (SM) protein is a critical step in vesicle fusion. The exact role played by SM proteins, whether positive or negative, has been the topic of much debate. High-resolution structures of the SM:Sx complex have shown that SM proteins can bind syntaxin in a closed fusion incompetent state. However, in vitro and in vivo experiments also point to a positive regulatory role for SM proteins that is inconsistent with binding syntaxin in a closed conformation. Here we present protocols we used for the expression and purification of the SM proteins Munc18a and Munc18c and syntaxins 1 and 4 along with procedures used for small-angle X-ray and neutron scattering that showed that syntaxins can bind in an open conformation to SM proteins. We also describe methods for chemical cross-linking experiments and detail how this information can be combined with scattering data to obtain low-resolution structural models for SM:Sx protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643. https://doi.org/10.1038/nrm2002

    Article  CAS  PubMed  Google Scholar 

  2. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772

    Article  CAS  PubMed  Google Scholar 

  3. Archbold JK, Whitten AE, Hu SH, Collins BM, Martin JL (2014) SNARE-ing the structures of Sec1/Munc18 proteins. Curr Opin Struct Biol 29:44–51. https://doi.org/10.1016/j.sbi.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Toonen RF, Verhage M (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol 13(4):177–186

    Article  CAS  PubMed  Google Scholar 

  5. Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404(6776):355–362. https://doi.org/10.1038/35006120

    Article  CAS  PubMed  Google Scholar 

  6. Yang B, Steegmaier M, Gonzalez LC Jr, Scheller RH (2000) nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 148(2):247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burkhardt P, Hattendorf DA, Weis WI, Fasshauer D (2008) Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J 27(7):923–933. https://doi.org/10.1038/emboj.2008.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burkhardt P (2015) The origin and evolution of synaptic proteins – choanoflagellates lead the way. J Exp Biol 218(Pt 4):506–514. https://doi.org/10.1242/jeb.110247

    Article  PubMed  Google Scholar 

  9. Bracher A, Weissenhorn W (2002) Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J 21(22):6114–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu SH, Latham CF, Gee CL, James DE, Martin JL (2007) Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 104(21):8773–8778. https://doi.org/10.1073/pnas.0701124104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu SH, Christie MP, Saez NJ, Latham CF, Jarrott R, Lua LH, Collins BM, Martin JL (2011) Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. Proc Natl Acad Sci U S A 108(3):1040–1045. https://doi.org/10.1073/pnas.0914906108

    Article  PubMed  Google Scholar 

  12. Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 104(8):2697–2702. https://doi.org/10.1073/pnas.0611318104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Latham CF, Lopez JA, Hu SH, Gee CL, Westbury E, Blair DH, Armishaw CJ, Alewood PF, Bryant NJ, James DE, Martin JL (2006) Molecular dissection of the Munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking. Traffic 7(10):1408–1419. https://doi.org/10.1111/j.1600-0854.2006.00474.x

    Article  CAS  PubMed  Google Scholar 

  14. Rodkey TL, Liu S, Barry M, McNew JA (2008) Munc18a scaffolds SNARE assembly to promote membrane fusion. Mol Biol Cell 19(12):5422–5434. https://doi.org/10.1091/mbc.E08-05-0538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128(1):183–195. https://doi.org/10.1016/j.cell.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  16. Shen J, Rathore SS, Khandan L, Rothman JE (2010) SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J Cell Biol 190(1):55–63. https://doi.org/10.1083/jcb.201003148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rathore SS, Bend EG, Yu H, Hammarlund M, Jorgensen EM, Shen J (2010) Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc Natl Acad Sci U S A 107(52):22399–22406. https://doi.org/10.1073/pnas.1012997108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malintan NT, Nguyen TH, Han L, Latham CF, Osborne SL, Wen PJ, Lim SJ, Sugita S, Collins BM, Meunier FA (2009) Abrogating Munc18-1-SNARE complex interaction has limited impact on exocytosis in PC12 cells. J Biol Chem 284(32):21637–21646. https://doi.org/10.1074/jbc.M109.013508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christie MP, Whitten AE, King GJ, Hu SH, Jarrott RJ, Chen KE, Duff AP, Callow P, Collins BM, James DE, Martin JL (2012) Low-resolution solution structures of Munc18:Syntaxin protein complexes indicate an open binding mode driven by the Syntaxin N-peptide. Proc Natl Acad Sci U S A 109(25):9816–9821. https://doi.org/10.1073/pnas.1116975109

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology--expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657. https://doi.org/10.1002/pro.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI (2016) Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 11(11):2122–2153. https://doi.org/10.1038/nprot.2016.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Svergun DI, Koch MH (2002) Advances in structure analysis using small-angle scattering in solution. Curr Opin Struct Biol 12(5):654–660

    Article  CAS  PubMed  Google Scholar 

  23. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Perez J, Pollack L, Ryan TM, Sali A, Schneidman-Duhovny D, Schwede T, Svergun DI, Sugiyama M, Tainer JA, Vachette P, Westbrook J, Whitten AE (2017) 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr D Struct Biol 73(Pt 9):710–728. https://doi.org/10.1107/S2059798317011597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whitten AE, Trewhella J (2009) Small-angle scattering and neutron contrast variation for studying bio-molecular complexes. Methods Mol Biol 544:307–323. https://doi.org/10.1007/978-1-59745-483-4_20

    Article  CAS  PubMed  Google Scholar 

  25. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley Science, New York

    Google Scholar 

  26. Glatter O (1975) The interpretation of real-space information from small-angle scattering experiments. J Appl Crystallogr 12(2):166–175

    Article  Google Scholar 

  27. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perpetual criteria. J Appl Crystallogr 24:495–503

    Article  Google Scholar 

  28. Orthaber D, Glatter O (2000) Synthetic phospholipid analogs: a structural investigation with scattering methods. Chem Phys Lipids 107(2):179–189

    Article  CAS  PubMed  Google Scholar 

  29. Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89(2):1237–1250. https://doi.org/10.1529/biophysj.105.064154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886. https://doi.org/10.1016/S0006-3495(99)77443-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neylon C (2008) Small angle neutron and X-ray scattering in structural biology: recent examples from the literature. Eur Biophys J 37(5):531–541. https://doi.org/10.1007/s00249-008-0259-2

    Article  CAS  PubMed  Google Scholar 

  32. Petoukhov MV, Svergun DI (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struct Biol 17(5):562–571. https://doi.org/10.1016/j.sbi.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  33. Hu SH, Gee CL, Latham CF, Rowlinson SW, Rova U, Jones A, Halliday JA, Bryant NJ, James DE, Martin JL (2003) Recombinant expression of Munc18c in a baculovirus system and interaction with syntaxin4. Protein Expr Purif 31(2):305–310

    Article  CAS  PubMed  Google Scholar 

  34. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Wilde KL, Wang H, Lake V, Holden PJ, Middelberg APJ, He L, Duff AP (2012) High yield expression and efficient purification of deuterated human protein galectin-2. Food Bioprod Process 90:563–572

    Article  CAS  Google Scholar 

  36. Duff AP, Wilde KL, Rekas A, Lake V, Holden PJ (2015) Robust high-yield methodologies for (2)H and (2)H/(15)N/(13)C labeling of proteins for structural investigations using neutron scattering and NMR. Methods Enzymol 565:3–25. https://doi.org/10.1016/bs.mie.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  37. Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH (2005) Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J Proteome Res 4(1):101–108. https://doi.org/10.1021/pr049837+

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pang SS, Berry R, Chen Z, Kjer-Nielsen L, Perugini MA, King GF, Wang C, Chew SH, La Gruta NL, Williams NK, Beddoe T, Tiganis T, Cowieson NP, Godfrey DI, Purcell AW, Wilce MC, McCluskey J, Rossjohn J (2010) The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 467(7317):844–848. https://doi.org/10.1038/nature09448

    Article  CAS  PubMed  Google Scholar 

  40. Christie MP (2010) Characterization of the interactions between the SNARE protein Syntaxin4 and the SM protein Munc18c. University of Queensland, Brisbane, Australia

    Google Scholar 

  41. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the Expasy server. In: Walker JM (ed) The proteomics handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle P. Christie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Whitten, A.E. et al. (2019). Studying Munc18:Syntaxin Interactions Using Small-Angle Scattering. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics