Skip to main content

EPR Lineshape Analysis to Investigate the SNARE Folding Intermediates

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

  • 1621 Accesses

Abstract

SNARE complex formation, which is believed to drive intracellular membrane fusion, transits through multiple conformational states along the membrane fusion pathway. The SNARE intermediates are biologically important because they serve as targets for fusion regulators and clostridial neurotoxins. Spin-labeling EPR has contributed significantly to the understanding of the structures and the dynamics of SNARE intermediates. In particular, the EPR lineshape analysis, which is highly sensitive to protein conformational changes such as the local coil-to-helix transition, has revealed the sequential compacting steps leading to formation of the highly stable four-helix bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324. https://doi.org/10.1038/362318a0

    Article  PubMed  Google Scholar 

  2. Weber T et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  3. Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK (1998) The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 5:765–769. https://doi.org/10.1038/1799

    Article  CAS  PubMed  Google Scholar 

  4. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528. https://doi.org/10.1038/nature08156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353. https://doi.org/10.1038/26412

    Article  CAS  PubMed  Google Scholar 

  6. Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. https://doi.org/10.1126/science.1161748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lou XC, Shin YK (2016) SNARE zippering. Biosci Rep 36:7. https://doi.org/10.1042/bsr20160004

    Article  Google Scholar 

  8. An J, Almers W (2004) Tracking SNARE complex formation in live endocrine cells. Science 306:1042–1046. https://doi.org/10.1126/science.1102559

    Article  CAS  PubMed  Google Scholar 

  9. Khounlo R, Kim J, Yin L, Shin YK (2017) Botulinum toxins A and E inflict dynamic destabilization on t-SNARE to impair SNARE assembly and membrane fusion. Structure 25:1679–1686.e1675. https://doi.org/10.1016/j.str.2017.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sørensen JB et al (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955–966. https://doi.org/10.1038/sj.emboj.7601003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao Y et al (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–1343. https://doi.org/10.1126/science.1224492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY (2013) Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat Commun 4:1705. https://doi.org/10.1038/ncomms2692

    Article  CAS  PubMed  Google Scholar 

  13. Shin J, Lou X, Kweon DH, Shin YK (2014) Multiple conformations of a single SNAREpin between two nanodisc membranes reveal diverse pre-fusion states. Biochem J 459:95–102. https://doi.org/10.1042/bj20131668

    Article  CAS  PubMed  Google Scholar 

  14. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    Article  CAS  PubMed  Google Scholar 

  15. Mchaourab HS, Steed PR, Kazmier K (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19:1549–1561. https://doi.org/10.1016/j.str.2011.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rabenstein MD, Shin YK (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci U S A 92:8239–8243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao W, Poirier MA, Bennett MK, Shin YK (2001) The neuronal t-SNARE complex is a parallel four-helix bundle. Nat Struct Biol 8:308–311. https://doi.org/10.1038/86174

    Article  CAS  PubMed  Google Scholar 

  18. Zhang F, Chen Y, Kweon DH, Kim CS, Shin YK (2002) The four-helix bundle of the neuronal target membrane SNARE complex is neither disordered in the middle nor uncoiled at the C-terminal region. J Biol Chem 277:24294–24298. https://doi.org/10.1074/jbc.M201200200

    Article  PubMed  Google Scholar 

  19. Tong J, Borbat PP, Freed JH, Shin YK (2009) A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Proc Natl Acad Sci U S A 106:5141–5146. https://doi.org/10.1073/pnas.0813138106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91:1667–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Xu Y, Zhang F, Shin YK (2004) Constitutive versus regulated SNARE assembly: a structural basis. EMBO J 23:681–689. https://doi.org/10.1038/sj.emboj.7600083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim CS, Kweon DH, Shin YK (2002) Membrane topologies of neuronal SNARE folding intermediates. Biochemistry 41:10928–10933

    Article  CAS  PubMed  Google Scholar 

  23. Kweon DH, Kim CS, Shin YK (2002) The membrane-dipped neuronal SNARE complex: a site-directed spin labeling electron paramagnetic resonance study. Biochemistry 41:9264–9268

    Article  CAS  PubMed  Google Scholar 

  24. Kweon DH, Kim CS, Shin YK (2003) Insertion of the membrane-proximal region of the neuronal SNARE coiled coil into the membrane. J Biol Chem 278:12367–12373. https://doi.org/10.1074/jbc.M211123200

    Article  CAS  PubMed  Google Scholar 

  25. Xu Y, Zhang F, Su Z, McNew JA, Shin YK (2005) Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12:417–422. https://doi.org/10.1038/nsmb921

    Article  CAS  PubMed  Google Scholar 

  26. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Su Z, Zhang F, Chen Y, Shin YK (2005) A partially zipped SNARE complex stabilized by the membrane. J Biol Chem 280:15595–15600. https://doi.org/10.1074/jbc.M500736200

    Article  CAS  PubMed  Google Scholar 

  28. QIAprep® Miniprep Handbook (2012) Qiagen. http://www.qiagen.com/us/resources/download.aspx?id=89bfa021-7310-4c0f-90e0-6a9c84f66cee〈=en

  29. Bio-Rad: Handcasting Polyacrylamide Gels. Bio-Rad. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf

  30. Bio-Rad: RC DC Protein Assay. Bio - Rad. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/4110107A.pdf

  31. QuikChange II Site-Directed Mutagenesis Kit: Instruction Manual. Agilent. https://www.genomics.agilent.com/files/Manual/200523.pdf

  32. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46. https://doi.org/10.1093/nar/gkm234

    Article  PubMed  PubMed Central  Google Scholar 

  33. Addgene: Bacterial Transformation. (2017). http://www.addgene.org/protocols/bacterial-transformation/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Kyun Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khounlo, R., Hawk, B.J.D., Shin, YK. (2019). EPR Lineshape Analysis to Investigate the SNARE Folding Intermediates. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics