Skip to main content

Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy

  • Protocol
  • First Online:
Book cover SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

SNARE-mediated membrane fusion is required for membrane trafficking as well as organelle biogenesis and homeostasis. The membrane fusion reaction involves sequential formation of hemifusion intermediates, whereby lipid monolayers partially mix on route to complete bilayer merger. Studies of the Saccharomyces cerevisiae lysosomal vacuole have revealed many of the fundamental mechanisms that drive the membrane fusion process, as well as features unique to organelle fusion. However, until recently, it has not been amenable to electron microscopy methods that have been invaluable for studying hemifusion in other model systems. Herein, we describe a method to visualize hemifusion intermediates during homotypic vacuole membrane fusion in vitro by transmission electron microscopy (TEM), electron tomography, and cryogenic electron microscopy (cryoEM). This method facilitates acquisition of invaluable ultrastructural data needed to comprehensively understand how fusogenic lipids and proteins contribute to SNARE-mediated membrane fusion-by-hemifusion and the unique features of organelle versus small-vesicle fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136

    Article  CAS  Google Scholar 

  2. Wang L, Merz AJ, Collins KM, Wickner W (2003) Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 160:365–374

    Article  CAS  Google Scholar 

  3. Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner WT (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167:1087–1098

    Article  CAS  Google Scholar 

  4. Schwartz ML, Merz AJ (2009) Capture and release of partially zipped trans-SNARE complexes on intact organelles. J Cell Biol 185:535–549

    Article  CAS  Google Scholar 

  5. Wang L, Seeley ES, Wickner W, Merz AJ (2002) Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 108:357–369

    Article  CAS  Google Scholar 

  6. McNally EK, Karim MA, Brett CL (2017) Selective lysosomal transporter degradation by organelle membrane fusion. Dev Cell 40:151–167

    Article  CAS  Google Scholar 

  7. Wickner W, Rizo J (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 28:707–711

    Article  CAS  Google Scholar 

  8. Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  CAS  Google Scholar 

  9. Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R (2012) Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–1584

    Article  CAS  Google Scholar 

  10. Risselada HJ, Bubnis G, Grubmüller H (2014) Expansion of the fusion stalk and its implication for biological membrane fusion. Proc Natl Acad Sci U S A 111:11043–11048

    Article  CAS  Google Scholar 

  11. Warner JM, O'Shaughnessy B (2012) Evolution of the hemifused intermediate on the pathway to membrane fusion. Biophys J 103:689–701

    Article  CAS  Google Scholar 

  12. Reese C, Mayer A (2005) Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J Cell Biol 171:981–990

    Article  CAS  Google Scholar 

  13. D'Agostino M, Risselada HJ, Mayer A (2016) Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 17:1590–1608

    Article  CAS  Google Scholar 

  14. Diao J, Grob P, Cipriano DJ, Kyoung M, Zhang Y, Shah S, Nguyen A, Padolina M, Srivastava A, Vrljic M, Shah A, Nogales E, Chu S, Brunger AT (2012) Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. elife 1:e00109

    Article  Google Scholar 

  15. Zampighi GA, Zampighi LM, Fain N, Lanzavecchia S, Simon SA, Wright EM (2006) Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys J 91:2910–2918

    Article  CAS  Google Scholar 

  16. Jun Y, Wickner W (2007) Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci U S A 104:13010–13015

    Article  CAS  Google Scholar 

  17. Mattie S, McNally EK, Karim MA, Vali H, Brett CL (2017) How and why intralumenal membrane fragments form during vacuolar lysosome fusion. Mol Biol Cell 28:309–321

    Article  CAS  Google Scholar 

  18. Reese C, Heise F, Mayer A (2005) Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436:410–414

    Article  CAS  Google Scholar 

  19. Pieren M, Schmidt A, Mayer A (2010) The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nat Struct Mol Biol 17:710–717

    Article  CAS  Google Scholar 

  20. Karunakaran S, Fratti RA (2013) The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 14:650–662

    Article  CAS  Google Scholar 

  21. Horst M, Knecht EC, Schu PV (1999) Import into and degradation of cytosolic proteins by isolated yeast vacuoles. Mol Biol Cell 10:2879–2889

    Article  CAS  Google Scholar 

  22. Michaillat L, Baars TL, Mayer A (2012) Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23:881–895

    Article  CAS  Google Scholar 

  23. Haas A (1995) A quantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci 17:283–294

    Article  Google Scholar 

  24. Peddie CJ, Collinson LM (2014) Exploring the third dimension: volume electron microscopy comes of age. Micron 61:9–19

    Article  Google Scholar 

  25. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Basu and staff members at the Facility for Electron Microscopy Research at McGill University (Montreal, Canada) for technical assistance. S.M. was supported by a Natural Sciences and Engineering Research Council of Canada Undergraduate Student Research Award and a Fonds de Recherche du Québec Summer Research Scholarship. This work was supported by Natural Sciences and Engineering Research Council of Canada grants RGPIN/403537-2011 and RGPIN/2017-06652 to C.L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Leonard Brett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mattie, S., Kazmirchuk, T., Mui, J., Vali, H., Brett, C.L. (2019). Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics