Skip to main content
Book cover

SNAREs pp 303–322Cite as

Reconstituted Proteoliposome Fusion Mediated by Yeast SNARE-Family Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

Membrane fusion mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-family proteins is an essential process for intracellular membrane trafficking in all eukaryotic cells, which delivers proteins and lipids to their appropriate subcellular membrane compartments such as organelles and plasma membrane. The molecular basis of SNARE-mediated membrane fusion has been revealed by studying fusion of reconstituted proteoliposomes bearing purified SNARE-family proteins and chemically defined lipid species. This chapter describes the detailed experimental protocols for (1) purification of recombinant SNARE-family and SM (Sec1/Munc18-family) proteins in the yeast Saccharomyces cerevisiae; (2) preparation of reconstituted proteoliposomes bearing purified yeast SNARE proteins; and (3) developing an assay to monitor lipid mixing between reconstituted SNARE-bearing proteoliposomes. Lipid mixing assays for reconstituted SNARE-bearing proteoliposomes are useful for evaluating the intrinsic capacity of SNARE-family proteins to directly catalyze membrane fusion and to determine the specificity of membrane fusion.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  CAS  Google Scholar 

  2. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  CAS  Google Scholar 

  3. Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664

    Article  CAS  Google Scholar 

  4. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136

    Article  CAS  Google Scholar 

  5. Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  Google Scholar 

  6. Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17:465–479

    Article  CAS  Google Scholar 

  7. Wickner W, Rizo J (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 28:707–711

    Article  CAS  Google Scholar 

  8. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  Google Scholar 

  9. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149

    Article  CAS  Google Scholar 

  10. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827

    Article  CAS  Google Scholar 

  11. Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6:a022616

    Article  Google Scholar 

  12. Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167:1087–1098

    Article  CAS  Google Scholar 

  13. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  Google Scholar 

  14. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Söllner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153–159

    Article  CAS  Google Scholar 

  15. Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Küster P, König M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci U S A 101:2858–2863

    Article  CAS  Google Scholar 

  16. Mima J, Hickey CM, Xu H, Jun Y, Wickner W (2008) Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 27:2031–2042

    Article  CAS  Google Scholar 

  17. Ma C, Su L, Seven AB, Xu Y, Rizo J (2013) Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–425

    Article  CAS  Google Scholar 

  18. Izawa R, Onoue T, Furukawa N, Mima J (2012) Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem 287:3445–3453

    Article  CAS  Google Scholar 

  19. Furukawa N, Mima J (2014) Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci Rep 4:4277

    Article  Google Scholar 

  20. Burri L, Lithgow T (2004) A complete set of SNAREs in yeast. Traffic 5:45–52

    Article  CAS  Google Scholar 

  21. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95:15781–15786

    Article  CAS  Google Scholar 

  22. Zinser E, Daum G (1995) Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11:493–536

    Article  CAS  Google Scholar 

  23. Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099

    Article  CAS  Google Scholar 

  24. Lentz BR (2007) PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36:315–326

    Article  CAS  Google Scholar 

  25. Dennison SM, Bowen ME, Brunger AT, Lentz BR (2006) Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys J 90:1661–1675

    Article  CAS  Google Scholar 

  26. Hickey CM, Wickner W (2010) HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol Biol Cell 21:2297–2305

    Article  CAS  Google Scholar 

  27. Zick M, Wickner W (2013) The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Mol Biol Cell 24:3746–3753

    Article  CAS  Google Scholar 

  28. Grabowski R, Gallwitz D (1997) High-affinity binding of the yeast cis-Golgi t-SNARE, Sed5p, to wild-type and mutant Sly1p, a modulator of transport vesicle docking. FEBS Lett 411:169–172

    Article  CAS  Google Scholar 

  29. Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Südhof TC (2002) Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2:295–305

    Article  CAS  Google Scholar 

  30. Peng R, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157:645–655

    Article  CAS  Google Scholar 

  31. Gallwitz D, Jahn R (2003) The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 28:113–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program to Disseminate Tenure Tracking System from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) and Grants-in-Aid for Scientific Research from MEXT to J.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joji Mima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mima, J. (2019). Reconstituted Proteoliposome Fusion Mediated by Yeast SNARE-Family Proteins. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics