Skip to main content

A Cell-Free Content Mixing Assay for SNARE-Mediated Multivesicular Body-Vacuole Membrane Fusion

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

Endocytosis is a fundamental process underlying diverse eukaryotic physiology. The terminal stage of this process is membrane fusion between the perimeter membrane of a late endosome filled with intraluminal vesicles, or multivesicular body (MVB), and the lysosome membrane to facilitate catabolism of internalized biomaterials or surface polytopic proteins. To comprehensively understand the mechanisms underlying MVB-lysosome membrane fusion, we developed a quantitative, cell-free assay to study this SNARE-mediated event in molecular detail using Saccharomyces cerevisiae and its vacuolar lysosome, or vacuole, as models. This involves separately isolating organelles from two yeast strains each expressing a different complementary fusion probe targeted to the lumen of either MVBs or vacuoles. Isolated organelles are mixed in vitro under fusogenic conditions. Upon MVB-vacuole membrane fusion, luminal contents mix to facilitate probe interaction, reconstituting β-lactamase activity recorded by a colorimetric enzyme activity assay. This method accommodates a multitude of approaches (e.g., genetics, addition of purified protein reagents) to study this process in isolation, and in theory could be repurposed to study other SNARE-mediated fusion events within cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23:452–457

    Article  CAS  Google Scholar 

  2. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  CAS  Google Scholar 

  3. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    Article  CAS  Google Scholar 

  4. Schmidt O, Teis D (2012) The ESCRT machinery. Curr Biol 22:R116–R120

    Article  CAS  Google Scholar 

  5. Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 23:519–547

    Article  CAS  Google Scholar 

  6. Luzio JP, Gray SR, Bright NA (2010) Endosome-lysosome fusion. Biochem Soc Trans 38:1413–1416

    Article  CAS  Google Scholar 

  7. Kümmel D, Ungermann C (2014) Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr Opin Cell Biol 29:61–66

    Article  Google Scholar 

  8. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136

    Article  CAS  Google Scholar 

  9. Wickner W, Rizo J (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 28:707–711

    Article  CAS  Google Scholar 

  10. Karim MA, Mattie S, Brett CL (2018) Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay. Traffic 19:138–149

    Article  CAS  Google Scholar 

  11. Jun Y, Wickner W (2007) Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci U S A 104:13010–13015

    Article  CAS  Google Scholar 

  12. Haas A (1995) A quantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci 17:283–294

    Article  Google Scholar 

  13. Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP (2015) Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 209:879–894

    Article  CAS  Google Scholar 

  14. Pryor PR, Mullock BM, Bright NA, Lindsay MR, Gray SR, Richardson SC, Stewart A, James DE, Piper RC, Luzio JP (2004) Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep 5:590–595

    Article  CAS  Google Scholar 

  15. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402

    Article  CAS  Google Scholar 

  16. Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8:4936–4948

    Article  CAS  Google Scholar 

  17. Morvan J, Köchl R, Watson R, Collinson LM, Jefferies HB, Tooze SA (2009) In vitro reconstitution of fusion betweem immature autophagosomes and endosomes. Autophagy 5:676–689

    Article  CAS  Google Scholar 

  18. Vida T, Gerhardt B (1999) A cell-free assay allows reconstitution of Vps33p-dependent transport to the yeast vacuole/lysosome. J Cell Biol 146:85–98

    Article  CAS  Google Scholar 

  19. Karim MA, Brett CL (2018) The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion. Mol Biol Cell 29:317–325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank W.T. Wickner for plasmids. E.K. McNally and T. Kazmirchuk provided invaluable discussions and useful feedback. D.R.S. is a postdoctoral scholar funded by the Stiftelson Olle Engkvist Byggmästare. This work was supported by Natural Sciences and Engineering Research Council of Canada grants RGPIN/403537-2011 and RGPIN/2017-06652 to C.L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Leonard Brett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karim, M.A., Samyn, D.R., Brett, C.L. (2019). A Cell-Free Content Mixing Assay for SNARE-Mediated Multivesicular Body-Vacuole Membrane Fusion. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics