Skip to main content

Mass Spectrometry-Based Microbial Metabolomics: Techniques, Analysis, and Applications

  • Protocol
  • First Online:
Microbial Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1859))

Abstract

The demand for understanding the roles genes play in biological systems has steered the biosciences into the direction the metabolome, as it closely reflects the metabolic activities within a cell. The importance of the metabolome is further highlighted by its ability to influence the genome, transcriptome, and proteome. Consequently, metabolomic information is being used to understand microbial metabolic networks. At the forefront of this work is mass spectrometry, the most popular metabolomics measurement technique. Mass spectrometry-based metabolomic analyses have made significant contributions to microbiological research in the environment and human disease. In this chapter, we break down the technical aspects of mass spectrometry-based metabolomics and discuss its application to microbiological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Villas-Bôas SG, Roessner U, Hansen MAE et al (2007) Metabolome analysis: an introduction. John Wiley & Sons, Inc, Hoboken, NJ

    Book  Google Scholar 

  2. Baidoo EEK, Benke PI, Keasling JD (2012) Mass spectrometry-based microbial metabolomics. In: Navid A (ed) Microbial systems biology: methods and protocols. Springer, New York, NY, pp 215–278

    Chapter  Google Scholar 

  3. Murzin AG, Brenner SE, Hubbard T et al (1995) SCOP: a structural classification of proteins database for the Investigation of Sequences and Structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  4. Stryer L (1995) Biochemistry. W.H. Freeman & Company, New York, NY

    Google Scholar 

  5. Lodish H, Berk A, Zipursky L et al (2000) Molecular cell biology. W.H. Freeman & Company, New York

    Google Scholar 

  6. Pugh BF (2000) Control of gene expression through regulation of the TATA-binding protein. Gene 255:1–14

    Article  CAS  PubMed  Google Scholar 

  7. de KW, van DK (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  Google Scholar 

  8. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173

    Article  CAS  PubMed  Google Scholar 

  9. da Luz JA, Hans E, Zeng AP (2014) Automated fast filtration and on-filter quenching improve the intracellular metabolite analysis of microorganisms. Eng Life Sci 14:135–142

    Article  CAS  Google Scholar 

  10. Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565

    Article  CAS  PubMed  Google Scholar 

  11. Pinu FR, Villas-Boas SG, Aggio R (2017) Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites 7:E53

    Article  PubMed  CAS  Google Scholar 

  12. Breil C, Abert Vian M, Zemb T et al (2017) “Bligh and dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci 18:1–21

    Article  CAS  Google Scholar 

  13. Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  15. Axelsson M, Gentili F (2014) A single-step method for rapid extraction of total lipids from green microalgae. PLoS One 9:17–20

    Article  CAS  Google Scholar 

  16. Oikawa A, Fujita N, Horie R et al (2011) Solid-phase extraction for metabolomic analysis of high-salinity samples by capillary electrophoresis-mass spectrometry. J Sep Sci 34:1063–1068

    Article  CAS  PubMed  Google Scholar 

  17. Johnson WM, Kido Soule MC, Kujawinski EB (2017) Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. Limnol Oceanogr Methods 15:417–428

    Article  Google Scholar 

  18. Mousavi F, Bojko B, Pawliszyn J (2015) Development of high throughput 96-blade solid phase microextraction-liquid chromatrography-mass spectrometry protocol for metabolomics. Anal Chim Acta 892:95–104

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Zhu H, Huang G (2017) Ion suppression effect in DESI mass spectrometry and ESI mass spectrometry. Rapid Commun Mass Spectrom 31(23):1957–1962

    Article  CAS  PubMed  Google Scholar 

  20. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  CAS  PubMed  Google Scholar 

  21. Baker DR (1995) Capillary electrophoresis. John Wiley & Sons, Inc, New York

    Google Scholar 

  22. Harris DC (2003) Quantitative chemical analysis. W. H. Freeman and Company, New York

    Google Scholar 

  23. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography. Wiley, Hoboken, NJ

    Google Scholar 

  24. Przybyciel M, Industries ES, Berlin W et al (2002) Phase collapse. ES Industries, West Berlin, NJ

    Google Scholar 

  25. Bajad SU, Lu W, Kimball EH et al (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  CAS  PubMed  Google Scholar 

  26. ChromAcademy (2014) The Theory of HPLC. Chromatographic parameters. E-learning. Anal Chem Commun 1:23

    Google Scholar 

  27. Chawla G, Ranjan C (2016) Principle, instrumentation, and applications of UPLC: A novel technique of liquid chromatography. Open Chem J 3:1–16

    Article  Google Scholar 

  28. Desai TK, Mahajan AA, Thaker A (2012) Ultra performance liquid chromatography: a step ahead to HPLC. Int J Pharm Rev Res 2:61–68

    Google Scholar 

  29. Lake R (2007) Easy transfer of HPLC methods to UPLC. Restek Advantage 4:10–11

    Google Scholar 

  30. Cunliffe JM, Maloney TD (2007) Fused-core particle technology as an alternative to sub-2-microm particles to achieve high separation efficiency with low backpressure. J Sep Sci 30:3104–3109

    Article  CAS  PubMed  Google Scholar 

  31. Abrahim A, Al-Sayah M, Skrdla P et al (2010) Practical comparison of 2.7 μm fused-core silica particles and porous sub-2 μm particles for fast separations in pharmaceutical process development. J Pharm Biomed Anal 51:131–137

    Article  CAS  PubMed  Google Scholar 

  32. Hübschmann HJ (2008) Handbook of GC/MS: fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  33. Halket JM, Waterman D, Przyborowska AM et al (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  CAS  PubMed  Google Scholar 

  34. Halket J, Zaikin V (2003) Review: derivatization in mass spectrometry—1. Silylation. Eur J Mass Spectrom 9:1

    Article  CAS  Google Scholar 

  35. Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC-MS metabolomics. J Chromatogr B Anal Technol Biomed Life Sci 871:191–201

    Article  CAS  Google Scholar 

  36. Soga T, Ohashi Y, Ueno Y et al (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494

    Article  CAS  PubMed  Google Scholar 

  37. Baidoo EEK, Benke PI, Neusüss C et al (2008) Capillary electrophoresis-Fourier transform ion cyclotron resonance mass spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method. Anal Chem 80:3112–3122

    Article  CAS  PubMed  Google Scholar 

  38. Soga T, Ueno Y, Naraoka H et al (2002) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229

    Article  CAS  PubMed  Google Scholar 

  39. Harada K, Fukusaki E, Kobayashi A (2006) Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. J Biosci Bioeng 101:403–409

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmann E d, Stroobant V (2002) Mass spectrometry: principles and applications. Wiley, Chichester

    Google Scholar 

  41. Gabellca V, De PE (2005) Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom Rev 24:566–587

    Article  CAS  Google Scholar 

  42. Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Brooks Cole, Pacific Grove, CA

    Google Scholar 

  43. Fjieldsted J (2011) Time-of-flight mass spectrometry technical overview this overview describes. Agilent Technologies, Santa Clara, CA

    Google Scholar 

  44. Stewart II (1999) Electrospray mass spectrometry: a tool for elemental speciation. Spectrochim Acta B Atom Spectrosc 54:1649–1695

    Article  Google Scholar 

  45. Wilhelm O, Mädler L, Pratsinis SE (2003) Electrospray evaporation and deposition. J Aerosol Sci 34:815–836

    Article  CAS  Google Scholar 

  46. Bruins a P (1998) Mechanistic aspects of electrospray ionization. J Chromatogr A 798:345–357

    Article  Google Scholar 

  47. Smith JN, Flagan RC, Beauchamp JL (2002) Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 106:9957–9967

    Article  CAS  Google Scholar 

  48. Banks JF (1997) Review Recent advances in capillary electrophoresis/electrospray/mass spectrometry. Electrophoresis 18:2255–2266

    Article  CAS  PubMed  Google Scholar 

  49. Von BA, Nicholson G, Bayer E (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22:1251–1266

    Article  Google Scholar 

  50. Park CJ, Ahn JR (2005) A closed ion source with a cylindrical repeller for sensitivity enhancement in quadrupole mass spectrometry. Rev Sci Instrum 76:044101

    Article  CAS  Google Scholar 

  51. Watson JT, Sparkman OD (2007) (First published 20 June 2008) Introduction to mass spectrometry: instrumentation, applications and strategies for data interpretation. John Wiley & Sons, Inc., Chichester. https://doi.org/10.1002/9780470516898, Print ISBN: 9780470516348, Online ISBN: 9780470516898

  52. Hinterberger F (2006) Ion optics with electrostatic lenses. CAS, Cern Accel Sch Small Accel, Geneva, pp 27–44

    Google Scholar 

  53. Birkinshaw K, Hirst DM, Jarrold MF (1978) The focusing of an ion beam from a quadrupole mass filter using an electrostatic octopole lens. J Phys E 11:1037–1040

    Article  CAS  Google Scholar 

  54. Zhang R, Lei W, Molina LT et al (2000) Ion transmission and ion/molecule separation using an electrostatic ion guide in chemistry ionization mass spectrometry. Int J Mass Spectr 194(1):B1–B2

    Article  Google Scholar 

  55. Orloff J (2009) Handbook of charged particle optics. CRC Press, Boca Raton, FL

    Google Scholar 

  56. Limbach PA, Marshall AG, Wang M (1993) An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer. Int J Mass Spectrom Ion Process 125:135–143

    Article  CAS  Google Scholar 

  57. Willoughby R, Sheehan E, Mitrovich S (1998) A global view of LC/MS: how to solve your most challenging analytical. Global View Publishing, Pittsburg

    Google Scholar 

  58. Johnson AR, Carlson EE (2015) Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal Chem 87:10668–10678

    Article  CAS  PubMed  Google Scholar 

  59. McMaster MC (2005) LC/MS: a practical users guide. John Wiley & Sons, Inc, Hoboken, NJ

    Book  Google Scholar 

  60. Jonscher KR, Yates JR (1997) The quadrupole ion trap mass spectrometer – a small solution to a big challenge. Anal Biochem 224:1–15

    Article  Google Scholar 

  61. Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  CAS  PubMed  Google Scholar 

  62. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699

    Article  CAS  PubMed  Google Scholar 

  63. Scigelova M, Makarov A (2006) Orbitrap mass analyzer – overview and applications in proteomics. Proteomics 1:16–21

    Article  CAS  Google Scholar 

  64. Eliuk S, Makarov A (2015) Evolution of Orbitrap mass spectrometry instrumentation. Annu Rev Anal Chem 8:61–80

    Article  Google Scholar 

  65. Marshall AG, Hendrickson CL, GS J (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass SpectromRev 17:1–35

    Article  CAS  Google Scholar 

  66. Products C (2008) Electron multipliers for mass spectrometry. Restek, Bellefonte, PA, pp 1–4

    Google Scholar 

  67. Ladislas Wiza J (1979) Microchannel plate detectors. Nucl Instrum Methods 162:587–601

    Article  Google Scholar 

  68. Barnstedt J. Microchannel plate detectors. http://www.uni-tuebingen.de/fileadmin/Uni_Tuebingen/Fakultaeten/MathePhysik/Institute/IAAT/AIT/Lehrveranstaltungen/F-Praktikum/Dokumente/VersuchsAnleitungMCP_english.pdf

  69. Link H, Fuhrer T, Gerosa L et al (2015) Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods 12:1091–1097

    Article  CAS  PubMed  Google Scholar 

  70. Heinemann J, Noon B, Mohigmi MJ et al (2014) Real-time digitization of metabolomics patterns from a living system using mass spectrometry. J Am Soc Mass Spectrom 25:1755–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aretz I, Meierhofer D (2016) Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int J Mol Sci 17:E632

    Article  PubMed  CAS  Google Scholar 

  72. Fujimura Y, Miura D (2014) MALDI mass spectrometry imaging for visualizing in situ metabolism of endogenous metabolites and dietary phytochemicals. Metabolites 4:319–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shroff R, Schramm K, Jeschke V et al (2015) Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J 81:961–972

    Article  CAS  PubMed  Google Scholar 

  74. Zaima N, Hayasaka T, Goto-Inoue N et al (2010) Matrix-assisted laser desorption/ionization imaging mass spectrometry. Int J Mol Sci 11:5040–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dunham SJB, Ellis JF, Li B et al (2017) Mass spectrometry imaging of complex microbial communities. Acc Chem Res 50:96–104

    Article  CAS  PubMed  Google Scholar 

  76. Svatos A (2011) Single-cell metabolomics comes of age new developments in mass spectrometry profiling and imaging. Anal Chem 83:5037–5044

    Article  CAS  PubMed  Google Scholar 

  77. Passarelli MK, Newman CF, Marshall PS et al (2015) Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem 87:6696–6702

    Article  CAS  PubMed  Google Scholar 

  78. Louie KB, Bowen BP, Cheng X et al (2013) “Replica-extraction-transfer” nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria. Anal Chem 85:10856–10862

    Article  CAS  PubMed  Google Scholar 

  79. Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036

    Article  CAS  PubMed  Google Scholar 

  80. Woo HK, Northen TR, Yanes O et al (2008) Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat Protoc 3:1341–1349

    Article  CAS  PubMed  Google Scholar 

  81. Banimustafa AH, Hardy NW (2012) A strategy for selecting data mining techniques in metabolomics. Methods Mol Biol 860:317–333

    Article  CAS  PubMed  Google Scholar 

  82. Baran R (2017) Untargeted metabolomics suffers from incomplete raw data processing. Metabolomics 13:107–110

    Article  CAS  Google Scholar 

  83. Roberts LD, Souza AL, Gerszten RE et al (2012) Targeted metabolomics. Curr Protoc Mol Biol 1:1–24

    Google Scholar 

  84. Wu L, Mashego MR, Van DJC et al (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171

    Article  CAS  PubMed  Google Scholar 

  85. Saccenti E, Hoefsloot HCJ, Smilde AK et al (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374

    Article  CAS  Google Scholar 

  86. Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1:92–107

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23

    Article  CAS  PubMed  Google Scholar 

  88. Warth B, Spangler S, Fang M et al (2017) Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal Chem 2017:acs.analchem.7b02759

    Google Scholar 

  89. Cai Y, Weng K, Guo Y et al (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586

    Article  CAS  Google Scholar 

  90. Schwahn K, Beleggia R, Omranian N et al (2017) Stoichiometric correlation analysis: principles of metabolic functionality from metabolomics data. Front Plant Sci 8:1–12

    Article  Google Scholar 

  91. Robinson MD, De SDP, Keen W et al (2007) A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinformatics 8:419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Alves TC, Pongratz RL, Zhao X et al (2015) Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab 22:936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kappelmann J, Klein B, Geilenkirchen P et al (2017) Comprehensive and accurate tracking of carbon origin of LC-tandem mass spectrometry collisional fragments for 13C-MFA. Anal Bioanal Chem 409:2309–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gebreselassie NA, Antoniewicz MR (2015) 13C-metabolic flux analysis of co-cultures: a novel approach. Metab Eng 31:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755

    Article  CAS  PubMed  Google Scholar 

  96. Schumacher R, Wahl SA (2015) Effective estimation of dynamic metabolic fluxes using 13C labeling and piecewise affine approximation: from theory to practical applicability. Metabolites 5:697–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Julien F, Georges R, Vande A et al (2016) Direct metabolic of dynamic metabolic of dynamic metabolic analysis dynamic metabolic flux of and overdetermined underdetermined and overdetermined underdetermined and overdetermined underdetermined and metabolic. Science 49:318–323

    Google Scholar 

  98. Liu D, Hoynes-O’Connor A, Zhang F (2013) Bridging the gap between systems biology and synthetic biology. Front Microbiol 4:1–8

    Article  Google Scholar 

  99. Kell DB (2006) Metabolomics, modelling and machine learning in systems biology – towards an understanding of the languages of cells. FEBS J 273:873–894

    Article  CAS  PubMed  Google Scholar 

  100. O’Hagan S, Kell DB (2018) Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol J 13:1–11

    Article  CAS  Google Scholar 

  101. Ritchie MD, Holzinger ER, Li R et al (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16:85–97

    Article  CAS  PubMed  Google Scholar 

  102. Trivedi DK, Hollywood KA, Goodacre R (2017) Metabolomics for the masses: The future of metabolomics in a personalized world. New Horizons Transl Med 3:294–305

    Google Scholar 

  103. George KW, Thompson MG, Kang A et al (2015) Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci Rep 5:11128

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhou K, Zou R, Stephanopoulos G et al (2012) Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production. PLoS One 7:e47513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zou R, Zhou K, Stephanopoulos G et al (2013) Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One 8:e79557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. George KW, Thompson M, Kim J et al (2018) Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng 47:60–72

    Article  CAS  PubMed  Google Scholar 

  107. Brunk E, George KW, Alonso-Gutierrez J et al (2016) Characterizing strain variation in engineered E. coli. Cell Syst 2:335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Panizzon JP, Luiz H, Júnior P et al (2015) Microbial diversity: relevance and relationship between environmental conservation and human health. Braz Arch Biol Technol 58:137–145

    Article  Google Scholar 

  109. Nazaries L, Pan Y, Bodrossy L et al (2013) Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol 79:4031–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vanwonterghem I, Jensen PD, Ho DP et al (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  CAS  PubMed  Google Scholar 

  112. Beale DJ, Crosswell J, Karpe AV et al (2017) A multi-omics based ecological analysis of coastal marine sediments from Gladstone, in Australia’s Central Queensland, and Heron Island, a nearby fringing platform reef. Sci Total Environ 609:842–853

    Article  CAS  PubMed  Google Scholar 

  113. Bargiela R, Herbst FA, Martínez-Martínez M et al (2015) Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 15:3508–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kimes NE, Callaghan AV, Aktas DF et al (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lutz S, Anesio AM, Field K et al (2015) Integrated “Omics”, targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol 6:1–17

    Google Scholar 

  116. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  117. Parmar KM, Gaikwad SL, Dhakephalkar PK et al (2017) Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front Microbiol 8:559

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bertrand S, Bohni N, Schnee S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    Article  CAS  PubMed  Google Scholar 

  119. World Health Organization. Infectious diseases. http://www.who.int/topics/infectious_diseases/en/

  120. World Health Organization. Malaria. http://www.who.int/mediacentre/factsheets/fs094/en/

  121. Park YH, Shi YP, Liang B et al (2015) High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. Malar J 14:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gardinassi LG, Cordy RJ, Lacerda MVG et al (2017) Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. Int J Med Microbiol 307:533–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lau SK, Lam C-W, Curreem SO et al (2015) Identification of specific metabolites in culture supernatant of Mycobacterium tuberculosis using metabolomics: exploration of potential biomarkers. Emerg Microbes Infect 4:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garay CD, Dreyfuss JM, Galagan JE (2015) Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Syst Biol 9:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Xu Y, Zhang Z, Sun Z (2015) Drug resistance to Mycobacterium tuberculosis: From the traditional Chinese view to modern systems biology. Crit Rev Microbiol 41:399–410

    Article  CAS  PubMed  Google Scholar 

  126. Lobritz MA, Belenky P, Porter CBM et al (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci 112:8173–8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Warner DF, Arlehamn CSL, Lewinsohn D et al (2014) Mycobacterium tuberculosis metabolism. Metabolism 5:a021121

    Google Scholar 

  128. Luier L, Loots DT (2016) Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive. Metabolomics 12:1–9

    Article  CAS  Google Scholar 

  129. Mason S, van FAMT, Solomons R et al (2016) A putative urinary biosignature for diagnosis and follow-up of tuberculous meningitis in children: outcome of a metabolomics study disclosing host–pathogen responses. Metabolomics 12:1–16

    Article  CAS  Google Scholar 

  130. Washio J, Takahashi N (2016) Metabolomic studies of oral biofilm, oral cancer, and beyond. Int J Mol Sci 17:870

    Article  PubMed Central  CAS  Google Scholar 

  131. Johnson CH, Dejea CM, Edler D et al (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shaffer M, Armstrong AJS, Phelan VV et al (2017) Microbiome and metabolome data integration provides insight into health and disease. Transl Res 189:51–64. https://doi.org/10.1016/j.trsl.2017.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martinez KB, Leone V, and Chang EB (2017) Microbial metabolites in health and disease: Navigating the unknown in search of function. J Biol Chem 292 (21):8553–8559. https://doi.org/10.1074/jbc.R116.752899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li DY, Tang WHW (2017) Gut Microbiota and Atherosclerosis. Curr Atheroscler Rep 19(10):39. https://doi.org/10.1007/s11883-017-0675-9

    Article  CAS  PubMed  Google Scholar 

  135. He X, Ji G, Jia W et al (2016) Gut microbiota and nonalcoholic fatty liver disease: insights on mechanism and application of metabolomics. Int J Mol Sci 17:300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Li H, He J, Jia W (2016) The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 12:31–40

    Article  PubMed  CAS  Google Scholar 

  137. Nichols RG, Hume NE, Smith PB et al (2016) Omics approaches to probe microbiota and drug metabolism interactions. Chem Res Toxicol 29:1987–1997

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would also like to acknowledge that this work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. K. Baidoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baidoo, E.E.K., Teixeira Benites, V. (2019). Mass Spectrometry-Based Microbial Metabolomics: Techniques, Analysis, and Applications. In: Baidoo, E. (eds) Microbial Metabolomics. Methods in Molecular Biology, vol 1859. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8757-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8757-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8756-6

  • Online ISBN: 978-1-4939-8757-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics