Abstract
The demand for understanding the roles genes play in biological systems has steered the biosciences into the direction the metabolome, as it closely reflects the metabolic activities within a cell. The importance of the metabolome is further highlighted by its ability to influence the genome, transcriptome, and proteome. Consequently, metabolomic information is being used to understand microbial metabolic networks. At the forefront of this work is mass spectrometry, the most popular metabolomics measurement technique. Mass spectrometry-based metabolomic analyses have made significant contributions to microbiological research in the environment and human disease. In this chapter, we break down the technical aspects of mass spectrometry-based metabolomics and discuss its application to microbiological research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Villas-Bôas SG, Roessner U, Hansen MAE et al (2007) Metabolome analysis: an introduction. John Wiley & Sons, Inc, Hoboken, NJ
Baidoo EEK, Benke PI, Keasling JD (2012) Mass spectrometry-based microbial metabolomics. In: Navid A (ed) Microbial systems biology: methods and protocols. Springer, New York, NY, pp 215–278
Murzin AG, Brenner SE, Hubbard T et al (1995) SCOP: a structural classification of proteins database for the Investigation of Sequences and Structures. J Mol Biol 247:536–540
Stryer L (1995) Biochemistry. W.H. Freeman & Company, New York, NY
Lodish H, Berk A, Zipursky L et al (2000) Molecular cell biology. W.H. Freeman & Company, New York
Pugh BF (2000) Control of gene expression through regulation of the TATA-binding protein. Gene 255:1–14
de KW, van DK (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123
Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173
da Luz JA, Hans E, Zeng AP (2014) Automated fast filtration and on-filter quenching improve the intracellular metabolite analysis of microorganisms. Eng Life Sci 14:135–142
Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565
Pinu FR, Villas-Boas SG, Aggio R (2017) Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites 7:E53
Breil C, Abert Vian M, Zemb T et al (2017) “Bligh and dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci 18:1–21
Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917
Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509
Axelsson M, Gentili F (2014) A single-step method for rapid extraction of total lipids from green microalgae. PLoS One 9:17–20
Oikawa A, Fujita N, Horie R et al (2011) Solid-phase extraction for metabolomic analysis of high-salinity samples by capillary electrophoresis-mass spectrometry. J Sep Sci 34:1063–1068
Johnson WM, Kido Soule MC, Kujawinski EB (2017) Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. Limnol Oceanogr Methods 15:417–428
Mousavi F, Bojko B, Pawliszyn J (2015) Development of high throughput 96-blade solid phase microextraction-liquid chromatrography-mass spectrometry protocol for metabolomics. Anal Chim Acta 892:95–104
Wang Z, Zhu H, Huang G (2017) Ion suppression effect in DESI mass spectrometry and ESI mass spectrometry. Rapid Commun Mass Spectrom 31(23):1957–1962
Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247
Baker DR (1995) Capillary electrophoresis. John Wiley & Sons, Inc, New York
Harris DC (2003) Quantitative chemical analysis. W. H. Freeman and Company, New York
Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography. Wiley, Hoboken, NJ
Przybyciel M, Industries ES, Berlin W et al (2002) Phase collapse. ES Industries, West Berlin, NJ
Bajad SU, Lu W, Kimball EH et al (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88
ChromAcademy (2014) The Theory of HPLC. Chromatographic parameters. E-learning. Anal Chem Commun 1:23
Chawla G, Ranjan C (2016) Principle, instrumentation, and applications of UPLC: A novel technique of liquid chromatography. Open Chem J 3:1–16
Desai TK, Mahajan AA, Thaker A (2012) Ultra performance liquid chromatography: a step ahead to HPLC. Int J Pharm Rev Res 2:61–68
Lake R (2007) Easy transfer of HPLC methods to UPLC. Restek Advantage 4:10–11
Cunliffe JM, Maloney TD (2007) Fused-core particle technology as an alternative to sub-2-microm particles to achieve high separation efficiency with low backpressure. J Sep Sci 30:3104–3109
Abrahim A, Al-Sayah M, Skrdla P et al (2010) Practical comparison of 2.7 μm fused-core silica particles and porous sub-2 μm particles for fast separations in pharmaceutical process development. J Pharm Biomed Anal 51:131–137
Hübschmann HJ (2008) Handbook of GC/MS: fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Halket JM, Waterman D, Przyborowska AM et al (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243
Halket J, Zaikin V (2003) Review: derivatization in mass spectrometry—1. Silylation. Eur J Mass Spectrom 9:1
Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC-MS metabolomics. J Chromatogr B Anal Technol Biomed Life Sci 871:191–201
Soga T, Ohashi Y, Ueno Y et al (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494
Baidoo EEK, Benke PI, Neusüss C et al (2008) Capillary electrophoresis-Fourier transform ion cyclotron resonance mass spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method. Anal Chem 80:3112–3122
Soga T, Ueno Y, Naraoka H et al (2002) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229
Harada K, Fukusaki E, Kobayashi A (2006) Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. J Biosci Bioeng 101:403–409
Hoffmann E d, Stroobant V (2002) Mass spectrometry: principles and applications. Wiley, Chichester
Gabellca V, De PE (2005) Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom Rev 24:566–587
Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Brooks Cole, Pacific Grove, CA
Fjieldsted J (2011) Time-of-flight mass spectrometry technical overview this overview describes. Agilent Technologies, Santa Clara, CA
Stewart II (1999) Electrospray mass spectrometry: a tool for elemental speciation. Spectrochim Acta B Atom Spectrosc 54:1649–1695
Wilhelm O, Mädler L, Pratsinis SE (2003) Electrospray evaporation and deposition. J Aerosol Sci 34:815–836
Bruins a P (1998) Mechanistic aspects of electrospray ionization. J Chromatogr A 798:345–357
Smith JN, Flagan RC, Beauchamp JL (2002) Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 106:9957–9967
Banks JF (1997) Review Recent advances in capillary electrophoresis/electrospray/mass spectrometry. Electrophoresis 18:2255–2266
Von BA, Nicholson G, Bayer E (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22:1251–1266
Park CJ, Ahn JR (2005) A closed ion source with a cylindrical repeller for sensitivity enhancement in quadrupole mass spectrometry. Rev Sci Instrum 76:044101
Watson JT, Sparkman OD (2007) (First published 20 June 2008) Introduction to mass spectrometry: instrumentation, applications and strategies for data interpretation. John Wiley & Sons, Inc., Chichester. https://doi.org/10.1002/9780470516898, Print ISBN: 9780470516348, Online ISBN: 9780470516898
Hinterberger F (2006) Ion optics with electrostatic lenses. CAS, Cern Accel Sch Small Accel, Geneva, pp 27–44
Birkinshaw K, Hirst DM, Jarrold MF (1978) The focusing of an ion beam from a quadrupole mass filter using an electrostatic octopole lens. J Phys E 11:1037–1040
Zhang R, Lei W, Molina LT et al (2000) Ion transmission and ion/molecule separation using an electrostatic ion guide in chemistry ionization mass spectrometry. Int J Mass Spectr 194(1):B1–B2
Orloff J (2009) Handbook of charged particle optics. CRC Press, Boca Raton, FL
Limbach PA, Marshall AG, Wang M (1993) An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer. Int J Mass Spectrom Ion Process 125:135–143
Willoughby R, Sheehan E, Mitrovich S (1998) A global view of LC/MS: how to solve your most challenging analytical. Global View Publishing, Pittsburg
Johnson AR, Carlson EE (2015) Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal Chem 87:10668–10678
McMaster MC (2005) LC/MS: a practical users guide. John Wiley & Sons, Inc, Hoboken, NJ
Jonscher KR, Yates JR (1997) The quadrupole ion trap mass spectrometer – a small solution to a big challenge. Anal Biochem 224:1–15
Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443
Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699
Scigelova M, Makarov A (2006) Orbitrap mass analyzer – overview and applications in proteomics. Proteomics 1:16–21
Eliuk S, Makarov A (2015) Evolution of Orbitrap mass spectrometry instrumentation. Annu Rev Anal Chem 8:61–80
Marshall AG, Hendrickson CL, GS J (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass SpectromRev 17:1–35
Products C (2008) Electron multipliers for mass spectrometry. Restek, Bellefonte, PA, pp 1–4
Ladislas Wiza J (1979) Microchannel plate detectors. Nucl Instrum Methods 162:587–601
Barnstedt J. Microchannel plate detectors. http://www.uni-tuebingen.de/fileadmin/Uni_Tuebingen/Fakultaeten/MathePhysik/Institute/IAAT/AIT/Lehrveranstaltungen/F-Praktikum/Dokumente/VersuchsAnleitungMCP_english.pdf
Link H, Fuhrer T, Gerosa L et al (2015) Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods 12:1091–1097
Heinemann J, Noon B, Mohigmi MJ et al (2014) Real-time digitization of metabolomics patterns from a living system using mass spectrometry. J Am Soc Mass Spectrom 25:1755–1762
Aretz I, Meierhofer D (2016) Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int J Mol Sci 17:E632
Fujimura Y, Miura D (2014) MALDI mass spectrometry imaging for visualizing in situ metabolism of endogenous metabolites and dietary phytochemicals. Metabolites 4:319–346
Shroff R, Schramm K, Jeschke V et al (2015) Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J 81:961–972
Zaima N, Hayasaka T, Goto-Inoue N et al (2010) Matrix-assisted laser desorption/ionization imaging mass spectrometry. Int J Mol Sci 11:5040–5055
Dunham SJB, Ellis JF, Li B et al (2017) Mass spectrometry imaging of complex microbial communities. Acc Chem Res 50:96–104
Svatos A (2011) Single-cell metabolomics comes of age new developments in mass spectrometry profiling and imaging. Anal Chem 83:5037–5044
Passarelli MK, Newman CF, Marshall PS et al (2015) Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem 87:6696–6702
Louie KB, Bowen BP, Cheng X et al (2013) “Replica-extraction-transfer” nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria. Anal Chem 85:10856–10862
Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036
Woo HK, Northen TR, Yanes O et al (2008) Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat Protoc 3:1341–1349
Banimustafa AH, Hardy NW (2012) A strategy for selecting data mining techniques in metabolomics. Methods Mol Biol 860:317–333
Baran R (2017) Untargeted metabolomics suffers from incomplete raw data processing. Metabolomics 13:107–110
Roberts LD, Souza AL, Gerszten RE et al (2012) Targeted metabolomics. Curr Protoc Mol Biol 1:1–24
Wu L, Mashego MR, Van DJC et al (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171
Saccenti E, Hoefsloot HCJ, Smilde AK et al (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374
Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1:92–107
Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23
Warth B, Spangler S, Fang M et al (2017) Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal Chem 2017:acs.analchem.7b02759
Cai Y, Weng K, Guo Y et al (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586
Schwahn K, Beleggia R, Omranian N et al (2017) Stoichiometric correlation analysis: principles of metabolic functionality from metabolomics data. Front Plant Sci 8:1–12
Robinson MD, De SDP, Keen W et al (2007) A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinformatics 8:419
Alves TC, Pongratz RL, Zhao X et al (2015) Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab 22:936–947
Kappelmann J, Klein B, Geilenkirchen P et al (2017) Comprehensive and accurate tracking of carbon origin of LC-tandem mass spectrometry collisional fragments for 13C-MFA. Anal Bioanal Chem 409:2309–2326
Gebreselassie NA, Antoniewicz MR (2015) 13C-metabolic flux analysis of co-cultures: a novel approach. Metab Eng 31:132–139
Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755
Schumacher R, Wahl SA (2015) Effective estimation of dynamic metabolic fluxes using 13C labeling and piecewise affine approximation: from theory to practical applicability. Metabolites 5:697–719
Julien F, Georges R, Vande A et al (2016) Direct metabolic of dynamic metabolic of dynamic metabolic analysis dynamic metabolic flux of and overdetermined underdetermined and overdetermined underdetermined and overdetermined underdetermined and metabolic. Science 49:318–323
Liu D, Hoynes-O’Connor A, Zhang F (2013) Bridging the gap between systems biology and synthetic biology. Front Microbiol 4:1–8
Kell DB (2006) Metabolomics, modelling and machine learning in systems biology – towards an understanding of the languages of cells. FEBS J 273:873–894
O’Hagan S, Kell DB (2018) Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol J 13:1–11
Ritchie MD, Holzinger ER, Li R et al (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16:85–97
Trivedi DK, Hollywood KA, Goodacre R (2017) Metabolomics for the masses: The future of metabolomics in a personalized world. New Horizons Transl Med 3:294–305
George KW, Thompson MG, Kang A et al (2015) Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci Rep 5:11128
Zhou K, Zou R, Stephanopoulos G et al (2012) Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production. PLoS One 7:e47513
Zou R, Zhou K, Stephanopoulos G et al (2013) Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One 8:e79557
George KW, Thompson M, Kim J et al (2018) Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng 47:60–72
Brunk E, George KW, Alonso-Gutierrez J et al (2016) Characterizing strain variation in engineered E. coli. Cell Syst 2:335–346
Panizzon JP, Luiz H, Júnior P et al (2015) Microbial diversity: relevance and relationship between environmental conservation and human health. Braz Arch Biol Technol 58:137–145
Nazaries L, Pan Y, Bodrossy L et al (2013) Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol 79:4031–4040
Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160
Vanwonterghem I, Jensen PD, Ho DP et al (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64
Beale DJ, Crosswell J, Karpe AV et al (2017) A multi-omics based ecological analysis of coastal marine sediments from Gladstone, in Australia’s Central Queensland, and Heron Island, a nearby fringing platform reef. Sci Total Environ 609:842–853
Bargiela R, Herbst FA, Martínez-Martínez M et al (2015) Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 15:3508–3520
Kimes NE, Callaghan AV, Aktas DF et al (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50
Lutz S, Anesio AM, Field K et al (2015) Integrated “Omics”, targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol 6:1–17
Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176
Parmar KM, Gaikwad SL, Dhakephalkar PK et al (2017) Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front Microbiol 8:559
Bertrand S, Bohni N, Schnee S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204
World Health Organization. Infectious diseases. http://www.who.int/topics/infectious_diseases/en/
World Health Organization. Malaria. http://www.who.int/mediacentre/factsheets/fs094/en/
Park YH, Shi YP, Liang B et al (2015) High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. Malar J 14:122
Gardinassi LG, Cordy RJ, Lacerda MVG et al (2017) Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. Int J Med Microbiol 307:533–541
Lau SK, Lam C-W, Curreem SO et al (2015) Identification of specific metabolites in culture supernatant of Mycobacterium tuberculosis using metabolomics: exploration of potential biomarkers. Emerg Microbes Infect 4:e6
Garay CD, Dreyfuss JM, Galagan JE (2015) Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Syst Biol 9:57
Xu Y, Zhang Z, Sun Z (2015) Drug resistance to Mycobacterium tuberculosis: From the traditional Chinese view to modern systems biology. Crit Rev Microbiol 41:399–410
Lobritz MA, Belenky P, Porter CBM et al (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci 112:8173–8180
Warner DF, Arlehamn CSL, Lewinsohn D et al (2014) Mycobacterium tuberculosis metabolism. Metabolism 5:a021121
Luier L, Loots DT (2016) Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive. Metabolomics 12:1–9
Mason S, van FAMT, Solomons R et al (2016) A putative urinary biosignature for diagnosis and follow-up of tuberculous meningitis in children: outcome of a metabolomics study disclosing host–pathogen responses. Metabolomics 12:1–16
Washio J, Takahashi N (2016) Metabolomic studies of oral biofilm, oral cancer, and beyond. Int J Mol Sci 17:870
Johnson CH, Dejea CM, Edler D et al (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891–897
Shaffer M, Armstrong AJS, Phelan VV et al (2017) Microbiome and metabolome data integration provides insight into health and disease. Transl Res 189:51–64. https://doi.org/10.1016/j.trsl.2017.07.001
Martinez KB, Leone V, and Chang EB (2017) Microbial metabolites in health and disease: Navigating the unknown in search of function. J Biol Chem 292 (21):8553–8559. https://doi.org/10.1074/jbc.R116.752899
Li DY, Tang WHW (2017) Gut Microbiota and Atherosclerosis. Curr Atheroscler Rep 19(10):39. https://doi.org/10.1007/s11883-017-0675-9
He X, Ji G, Jia W et al (2016) Gut microbiota and nonalcoholic fatty liver disease: insights on mechanism and application of metabolomics. Int J Mol Sci 17:300
Li H, He J, Jia W (2016) The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 12:31–40
Nichols RG, Hume NE, Smith PB et al (2016) Omics approaches to probe microbiota and drug metabolism interactions. Chem Res Toxicol 29:1987–1997
Acknowledgments
The authors would also like to acknowledge that this work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Baidoo, E.E.K., Teixeira Benites, V. (2019). Mass Spectrometry-Based Microbial Metabolomics: Techniques, Analysis, and Applications. In: Baidoo, E. (eds) Microbial Metabolomics. Methods in Molecular Biology, vol 1859. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8757-3_2
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8757-3_2
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8756-6
Online ISBN: 978-1-4939-8757-3
eBook Packages: Springer Protocols