Advertisement

Assessment of In Vivo Kidney Cell Death: Acute Kidney Injury

  • Wulf Tonnus
  • Moath Al-Mekhlafi
  • Christian Hugo
  • Andreas LinkermannEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1857)

Abstract

The kidney has been studied as an organ to investigate cell death in vivo for a number of reasons. The unique vasculature that does not contain collateral vessels favors the kidney over other organs for the investigation of ischemia–reperfusion injury. Unilateral uretic obstruction has become the most prominently studied model for fibrosis with impact far beyond postrenal kidney injury. In addition, the tubular elimination mechanisms render the kidney susceptible to toxicity models, such as cisplatin-induced acute kidney injury. During trauma of skeletal muscles, myoglobulin deposition causes tubular cell death in the model of rhabdomyolysis-induced acute kidney injury. Here, we introduce these clinically relevant in vivo models of acute kidney injury (AKI) and critically review the protocols we use to effectively induce them.

Key words

Acute kidney injury (AKI) Kidney ischemia–reperfusion injury Unilateral ureteric obstruction Cisplatin-induced AKI Rhabdomyolysis-induced AKI 

References

  1. 1.
    Humes HD, Weinberg JM (1983) Alterations of renal tubular cell metabolism in acute renal failure. Miner Electrolyte Metab 9(4–6):290–305PubMedGoogle Scholar
  2. 2.
    Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R, Vanden Berghe T, Vandenabeele P, Pasparakis M, Bleich M, Weinberg JM, Reichel CA, Brasen JH, Kunzendorf U, Anders HJ, Stockwell BR, Green DR, Krautwald S (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A 111(47):16836–16841. https://doi.org/10.1073/pnas.1415518111CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S (2012) Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81(8):751–761. https://doi.org/10.1038/ki.2011.450CrossRefPubMedGoogle Scholar
  4. 4.
    Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A 110(29):12024–12029. https://doi.org/10.1073/pnas.1305538110CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Singh P, Blantz RC, Rosenberger C, Gabbai FB, Schoeb TR, Thomson SC (2012) Aberrant tubuloglomerular feedback and HIF-1alpha confer resistance to ischemia after subtotal nephrectomy. J Am Soc Nephrol 23(3):483–493. https://doi.org/10.1681/asn.2011020130CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schrier RW (2002) Cancer therapy and renal injury. J Clin Invest 110(6):743–745. https://doi.org/10.1172/jci16568CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8(5):368–379CrossRefPubMedGoogle Scholar
  8. 8.
    Linkermann A, Himmerkus N, Rolver L, Keyser KA, Steen P, Brasen JH, Bleich M, Kunzendorf U, Krautwald S (2011) Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney Int 79(2):169–178CrossRefPubMedGoogle Scholar
  9. 9.
    Bolisetty S, Traylor A, Joseph R, Zarjou A, Agarwal A (2016) Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 310(5):F385–F394. https://doi.org/10.1152/ajprenal.00335.2015CrossRefPubMedGoogle Scholar
  10. 10.
    Oken DE, Arce ML, Wilson DR (1966) Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J Clin Invest 45(5):724–735. https://doi.org/10.1172/jci105387CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fahling M, Mathia S, Paliege A, Koesters R, Mrowka R, Peters H, Persson PB, Neumayer HH, Bachmann S, Rosenberger C (2013) Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI. J Am Soc Nephrol 24(11):1806–1819CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zager RA, Burkhart KM, Conrad DS, Gmur DJ (1995) Iron, heme oxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int 48(5):1624–1634CrossRefPubMedGoogle Scholar
  13. 13.
    Zarjou A, Bolisetty S, Joseph R, Traylor A, Apostolov EO, Arosio P, Balla J, Verlander J, Darshan D, Kuhn LC, Agarwal A (2013) Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J Clin Invest 123(10):4423–4434CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wulf Tonnus
    • 1
  • Moath Al-Mekhlafi
    • 1
  • Christian Hugo
    • 1
  • Andreas Linkermann
    • 1
    Email author
  1. 1.Division of Nephrology, Department of Internal Medicine IIIUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany

Personalised recommendations