Abstract
The carotene producer Mucor circinelloides is the fungus within the Mucoromycota phylum with the widest repertoire of molecular tools to manipulate its genome. The initial development of an effective procedure for genetic transformation and later improvements have resulted in an expansion of available tools, which include gene replacement, inactivation of gene expression by RNA silencing, gene overexpression, and functional genomics. Moreover, sequencing of its genome has given a definitive boost to these techniques making attainable the study of genes involved in many physiological or developmental processes, including carotenoid biosynthesis. Here, we describe in detail the latest molecular techniques currently used in M. circinelloides that have made it a valuable model for studying gene function within its phylum.
Key words
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Spatafora JW et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046
Morin-Sardin S et al (2017) Mucor: a Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev 31(1):12–32
van Heeswijck R, Roncero M (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsb Res Commun 49:11
Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84(3):442–446
Torres-Martínez S et al (2012) Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol 898:85–107
Rodríguez-Frómeta RA et al (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97(7):3063–3072
Corrochano LM et al (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26(12):1577–1584
Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61(4):1023–1037
Silva F et al (2008) A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator. Mol Microbiol 70(4):1026–1036
Idnurm A et al (2008) Identification of the sex genes in an early diverged fungus. Nature 451(7175):193–196
Lee SC et al (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18(21):1675–1679
Garre V et al (2014) The RNAi machinery in Mucorales: the emerging role of endogenous small RNAs. In: Sesma A, von der Haar T (eds) Fungal RNA biology. Springer International Publishing, Cham, pp 291–314
Torres-Martínez S, Ruiz-Vázquez RM (2016) RNAi pathways in Mucor: a tale of proteins, small RNAs and functional diversity. Fungal Genet Biol 90:44–52
Trieu TA et al (2017) RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog 13(1):e1006150
Zhao L et al (2016) Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 100(3):1297–1305
Navarro E et al (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Gen Genomics 266(3):463–470
Zhang Y et al (2016) A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate beta-carotene over-producing strains by genetic engineering. Microb Cell Factories 15:99
Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815
Roukas T (2016) The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit Rev Biotechnol 36(3):424–433
Cerdá-Olmedo E (2001) Phycomyces and the biology of light and color. FEMS Microbiol Rev 25(5):503–512
Zhang Y et al (2017) Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation. Biotechnol Lett 39(3):439–446
Roncero MI (1984) Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosyl-polifungin. Carlsb Res Commun 49(7):685–690
Nicolás FE et al (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44(6):504–516
Anaya N, Roncero MI (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230(3):449–455
Benito EP et al (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase: use of pyrG for homologous transformation. Gene 116(1):59–67
Wolff AM, Arnau J (2002) Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (Syn. racemosus) and use of the gpd1 promoter for recombinant protein production. Fungal Genet Biol 35(1):21–29
Carter MJ, Milton ID (1993) An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Res 21(4):1044
Calo S et al (2012) Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol 83(2):379–394
Werner E, Patel K, Holder AA (1997) Construction of a library for sequencing long regions of malarial genomic DNA. Biotechniques 23(1):20, 22, 24
Roncero MI et al (1989) Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84(2):335–343
Clarke L, Carbon J (1976) A colony bank containing synthetic col El hybrid plasmids representative of the entire E. coli genome. Cell 9(1):91–99
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Nicolás, F.E. et al. (2018). Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides. In: Barreiro, C., Barredo, JL. (eds) Microbial Carotenoids. Methods in Molecular Biology, vol 1852. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8742-9_13
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8742-9_13
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8741-2
Online ISBN: 978-1-4939-8742-9
eBook Packages: Springer Protocols
