Skip to main content

Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1852))

Abstract

The carotene producer Mucor circinelloides is the fungus within the Mucoromycota phylum with the widest repertoire of molecular tools to manipulate its genome. The initial development of an effective procedure for genetic transformation and later improvements have resulted in an expansion of available tools, which include gene replacement, inactivation of gene expression by RNA silencing, gene overexpression, and functional genomics. Moreover, sequencing of its genome has given a definitive boost to these techniques making attainable the study of genes involved in many physiological or developmental processes, including carotenoid biosynthesis. Here, we describe in detail the latest molecular techniques currently used in M. circinelloides that have made it a valuable model for studying gene function within its phylum.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Spatafora JW et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morin-Sardin S et al (2017) Mucor: a Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev 31(1):12–32

    Article  Google Scholar 

  3. van Heeswijck R, Roncero M (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsb Res Commun 49:11

    Google Scholar 

  4. Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84(3):442–446

    Article  CAS  PubMed  Google Scholar 

  5. Torres-Martínez S et al (2012) Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol 898:85–107

    Article  CAS  PubMed  Google Scholar 

  6. Rodríguez-Frómeta RA et al (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97(7):3063–3072

    Article  CAS  PubMed  Google Scholar 

  7. Corrochano LM et al (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26(12):1577–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61(4):1023–1037

    Article  CAS  PubMed  Google Scholar 

  9. Silva F et al (2008) A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator. Mol Microbiol 70(4):1026–1036

    PubMed  CAS  Google Scholar 

  10. Idnurm A et al (2008) Identification of the sex genes in an early diverged fungus. Nature 451(7175):193–196

    Article  CAS  PubMed  Google Scholar 

  11. Lee SC et al (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18(21):1675–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garre V et al (2014) The RNAi machinery in Mucorales: the emerging role of endogenous small RNAs. In: Sesma A, von der Haar T (eds) Fungal RNA biology. Springer International Publishing, Cham, pp 291–314

    Chapter  Google Scholar 

  13. Torres-Martínez S, Ruiz-Vázquez RM (2016) RNAi pathways in Mucor: a tale of proteins, small RNAs and functional diversity. Fungal Genet Biol 90:44–52

    Article  CAS  PubMed  Google Scholar 

  14. Trieu TA et al (2017) RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog 13(1):e1006150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao L et al (2016) Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 100(3):1297–1305

    Article  CAS  PubMed  Google Scholar 

  16. Navarro E et al (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Gen Genomics 266(3):463–470

    Article  CAS  Google Scholar 

  17. Zhang Y et al (2016) A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate beta-carotene over-producing strains by genetic engineering. Microb Cell Factories 15:99

    Article  CAS  Google Scholar 

  18. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815

    Article  CAS  PubMed  Google Scholar 

  19. Roukas T (2016) The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit Rev Biotechnol 36(3):424–433

    PubMed  CAS  Google Scholar 

  20. Cerdá-Olmedo E (2001) Phycomyces and the biology of light and color. FEMS Microbiol Rev 25(5):503–512

    Article  PubMed  Google Scholar 

  21. Zhang Y et al (2017) Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation. Biotechnol Lett 39(3):439–446

    Article  CAS  PubMed  Google Scholar 

  22. Roncero MI (1984) Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosyl-polifungin. Carlsb Res Commun 49(7):685–690

    Article  CAS  Google Scholar 

  23. Nicolás FE et al (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44(6):504–516

    Article  CAS  PubMed  Google Scholar 

  24. Anaya N, Roncero MI (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230(3):449–455

    Article  CAS  PubMed  Google Scholar 

  25. Benito EP et al (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase: use of pyrG for homologous transformation. Gene 116(1):59–67

    Article  CAS  PubMed  Google Scholar 

  26. Wolff AM, Arnau J (2002) Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (Syn. racemosus) and use of the gpd1 promoter for recombinant protein production. Fungal Genet Biol 35(1):21–29

    Article  CAS  PubMed  Google Scholar 

  27. Carter MJ, Milton ID (1993) An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Res 21(4):1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calo S et al (2012) Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol 83(2):379–394

    Article  CAS  PubMed  Google Scholar 

  29. Werner E, Patel K, Holder AA (1997) Construction of a library for sequencing long regions of malarial genomic DNA. Biotechniques 23(1):20, 22, 24

    Article  PubMed  Google Scholar 

  30. Roncero MI et al (1989) Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84(2):335–343

    Article  CAS  PubMed  Google Scholar 

  31. Clarke L, Carbon J (1976) A colony bank containing synthetic col El hybrid plasmids representative of the entire E. coli genome. Cell 9(1):91–99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoriano Garre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nicolás, F.E. et al. (2018). Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides. In: Barreiro, C., Barredo, JL. (eds) Microbial Carotenoids. Methods in Molecular Biology, vol 1852. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8742-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8742-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8741-2

  • Online ISBN: 978-1-4939-8742-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics