Skip to main content

Synaptosome Preparations: Which Procedure Should I Use?

  • Protocol
  • First Online:
Synaptosomes

Part of the book series: Neuromethods ((NM,volume 141))

Abstract

One of the most extensively used model systems to investigate the functions and the chemical control of the nerve terminal has been the synaptosome. Synaptosomes are pinched-off nerve endings that form by shearing forces during homogenization of neuronal tissue. Depending on the aim of the study, synaptosomes can be used once they are formed within the whole neuronal tissue homogenate, or they can be separated from other subcellular organelles and enriched to various extents, depending on the fractionation procedures adopted. Each procedure varies in the time that it takes and provides synaptosomes with different levels of homogeneity and viability. The major contaminants of synaptosomes that remain after fractionation include neuronal and glial plasma membranes, attached postsynaptic membranes and densities, microsomes, synaptic vesicles, and extra-synaptosomal mitochondria. This chapter documents the most commonly used procedures for making synaptosomes, indicates the most likely contaminants present after each procedure, and assesses the viability of the resulting synaptosomes. This provides researchers with a decision tool to determine which synaptosome preparation procedure best suits the aims of their study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Del Castillo J, Katz B (1956) Biophysical aspects of neuro-muscular transmission. Prog Biophys Biophys Chem 6:121–170

    Article  Google Scholar 

  2. Hebb CO, Whittaker VP (1958) Intracellular distributions of acetylcholine and choline acetylase. J Physiol 142(1):187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Derobertis E et al (1962) Cholinergic and non-cholinergic nerve endings in rat brain .1. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem 9:23–35

    Article  CAS  Google Scholar 

  4. Gray EG, Whittaker VP (1962) Isolation of nerve endings from brain - an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Whittaker VP, Gray EG (1962) Synapse - biology and morphology. Br Med Bull 18(3):223–228

    Article  CAS  PubMed  Google Scholar 

  6. Whittaker VP, Michaelson IA, Kirkland RJ (1964) Separation of synaptic vesicles from nerve-ending particles (synaptosomes ). Biochem J 90(2):293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rockland KS (2002) Non-uniformity of extrinsic connections and columnar organization. J Neurocytol 31(3–5):247–253

    Article  PubMed  Google Scholar 

  8. Faisal AA, White JA, Laughlin SB (2005) Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr Biol 15(12):1143–1149

    Article  CAS  PubMed  Google Scholar 

  9. Dunkley PR et al (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 372(1):115–129

    Article  CAS  PubMed  Google Scholar 

  10. Robinson PJ, Lovenberg W (1986) Dopamine and serotonin in two populations of synaptosomes isolated by percoll gradient centrifugation. Neurochem Int 9(3):455–458

    Article  CAS  PubMed  Google Scholar 

  11. Dunkley PR et al (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441(1–2):59–71

    Article  CAS  PubMed  Google Scholar 

  12. Wilhelm BG et al (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344(6187):1023–1028

    Article  CAS  PubMed  Google Scholar 

  13. Hollingsworth EB et al (1985) Biochemical characterization of a filtered synaptoneurosome preparation from Guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J Neurosci 5(8):2240–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz RD et al (1984) Barbiturate and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes. FEBS Lett 175(1):193–196

    Article  CAS  PubMed  Google Scholar 

  15. Whittaker VP, Greengard P (1971) Isolation of synaptosomes from brain of a teleost fish, centriopristes-striatus. J Neurochem 18(2):173–176

    Google Scholar 

  16. Babitch JA et al (1976) Preparation of chick brain synaptosomes and synaptosomal membranes. Biochim Biophys Acta 433(1):75–89

    Article  CAS  PubMed  Google Scholar 

  17. Morgan IG et al (1971) Isolation of plasma membranes from rat brain. Biochim Biophys Acta 241(3):737–751

    Article  CAS  PubMed  Google Scholar 

  18. Gurd JW et al (1974) Isolation and partial characterization of rat brain synaptic plasma membranes. J Neurochem 22(2):281–290

    Article  CAS  PubMed  Google Scholar 

  19. Cotman C, Mahler HR, Anderson NG (1968) Isolation of a membrane fraction enriched in nerve-end membranes from rat brain by zonal cetrifugation. Biochim Biophys Acta 163(2):272–275

    Article  CAS  PubMed  Google Scholar 

  20. Leskawa KC et al (1979) Large-scale preparation of synaptosomes from bovine brain using a zonal rotor technique. Neurochem Res 4(4):483–504

    Article  CAS  PubMed  Google Scholar 

  21. Kishi M et al (1991) Pharmacological characteristics of choline transport system in mouse cerebral cortical neurons in primary culture. Jpn J Pharmacol 55(2):223–232

    Article  CAS  PubMed  Google Scholar 

  22. Restituito S et al (2011) Synaptic autoregulation by metalloproteases and gamma-secretase. J Neurosci 31(34):12083–12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bate C, Williams A (2012) Neurodegeneration induced by clustering of sialylated glycosylphosphatidylinositols of prion proteins. J Biol Chem 287(11):7935–7944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leshchyns’ka I et al (2015) Abeta-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer’s disease. Nat Commun 6:8836

    Article  PubMed  Google Scholar 

  25. Faundez V et al (1992) Epidermal growth factor receptor in synaptic fractions of the rat central nervous system. J Biol Chem 267(28):20363–20370

    CAS  PubMed  Google Scholar 

  26. Thorne B, Wonnacott S, Dunkley PR (1991) Isolation of hippocampal synaptosomes on Percoll gradients: cholinergic markers and ligand binding sites. J Neurochem 56(2):479–484

    Article  CAS  PubMed  Google Scholar 

  27. De Belleroche JA, Bradford HF (1975) The release of endogenous 3,4-dihydroxyphenethylamine from synaptosomes isolated from corpus striatum. Biochem Soc Trans 3(1):99–101

    Article  PubMed  Google Scholar 

  28. Clark M, Dar MS (1989) Release of endogenous glutamate from rat cerebellar synaptosomes: interactions with adenosine and ethanol. Life Sci 44(22):1625–1635

    Article  CAS  PubMed  Google Scholar 

  29. Tamir H, Rapport MM, Roizin L (1974) Preparation of synaptosomes and vesicles with sodium diatrizoate. J Neurochem 23(5):943–949

    Article  CAS  PubMed  Google Scholar 

  30. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728

    Article  CAS  PubMed  Google Scholar 

  31. Hardy JA et al (1983) Metabolically active synaptosomes can be prepared from frozen rat and human brain. J Neurochem 40(3):608–614

    Article  CAS  PubMed  Google Scholar 

  32. Dodd PR et al (1986) Optimization of freezing, storage, and thawing conditions for the preparation of metabolically active synaptosomes from frozen rat and human brain. Neurochem Pathol 4(3):177–198

    Article  CAS  PubMed  Google Scholar 

  33. Dodd PR et al (1989) Uptake of gamma-aminobutyric acid and L-glutamic acid by synaptosomes from postmortem human cerebral cortex: multiple sites, sodium dependence and effect of tissue preparation. Brain Res 490(2):320–331

    Article  CAS  PubMed  Google Scholar 

  34. Mazzo F et al (2016) Reconstitution of synaptic ion channels from rodent and human brain in Xenopus oocytes: a biochemical and electrophysiological characterization. J Neurochem 138(3):384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franklin W, Taglialatela G (2016) A method to determine insulin responsiveness in synaptosomes isolated from frozen brain tissue. J Neurosci Methods 261:128–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson WS, Cooper JR (1972) Preparation of cholinergic synaptosomes from bovine superior cervical ganglia. J Neurochem 19(12):2779–2790

    Article  CAS  PubMed  Google Scholar 

  37. Dowdall MJ, Whittaker VP (1973) Comparative studies in synaptosome formation: preparation of synaptosomes from head ganglion of squid, Loligo-Pealii. J Neurochem 20(4):921–935

    Google Scholar 

  38. Newkirk RF et al (1976) Comparative studies in synaptosome formation: preparation of synaptosomes from the ventral nerve cord of the lobster (Homarus americanus). Brain Res 101(1):103–111

    Article  CAS  PubMed  Google Scholar 

  39. Israel M et al (1985) Large-scale purification of Torpedo electric organ synaptosomes. J Neurochem 44(4):1107–1110

    Article  CAS  PubMed  Google Scholar 

  40. Chin GJ et al (1989) Aplysia synaptosomes. I. Preparation and biochemical and morphological characterization of subcellular membrane fractions. J Neurosci 9(1):38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bisby MA, Fillenz M (1969) Isolation of peripheral synaptosomes from a sympathetically innervated tissue. J Physiol 204(2):105P+

    CAS  PubMed  Google Scholar 

  42. Bisby MA, Fillenz M (1971) The storage of endogenous noradrenaline in sympathetic nerve terminals. J Physiol 215(1):163–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simon EJ et al (1976) Comparative studies on synaptosomes - applicability of rapid method for preparing synaptosomes to elasmobranch brain. Neurochem Res 1(1):83–92

    Article  CAS  PubMed  Google Scholar 

  44. Lagercrantz H, Pertoft H (1972) Separation of catecholamine storing synaptosomes in colloidal silica density gradients. J Neurochem 19(3):811–823

    Article  CAS  PubMed  Google Scholar 

  45. Chin GJ, Shapiro E, Schwartz JH (1989) Aplysia synaptosomes. II. Release of transmitters. J Neurosci 9(1):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hebb CO, Smallman BN (1956) Intracellular distribution of choline acetylase. J Physiol 134(2):385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdel-Latif AA (1966) A simple method for isolation of nerve-ending particles from rat brain. Biochim Biophys Acta 121(2):403–406

    Article  CAS  PubMed  Google Scholar 

  48. Kurokawa M, Sakamoto T, Kato M (1965) A rapid isolation of nerve-ending particles from brain. Biochim Biophys Acta 94(1):307–309

    Article  CAS  PubMed  Google Scholar 

  49. Ashton AC, Ushkaryov YA (2005) Properties of synaptic vesicle pools in mature central nerve terminals. J Biol Chem 280(44):37278–37288

    Article  CAS  PubMed  Google Scholar 

  50. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43(4):1114–1123

    Article  CAS  PubMed  Google Scholar 

  51. Geddes JW, Newstead JD, Wood JD (1980) Stability of the glutamate content of synaptosomes during their preparation. Neurochem Res 5(10):1107–1116

    Article  CAS  PubMed  Google Scholar 

  52. Whittaker VP (1959) The isolation and characterization of acetylcholine-containing particles from brain. Biochem J 72:694–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dodd PR et al (1981) Rapid preparation of nerve ending particles (synaptosomes) from rat-brain - comparison with 2 standard methods. J Anat 132:462

    Google Scholar 

  54. Cotman C et al (1970) Analytical differential centrifugation: an analysis of the sedimentation properties of synaptosomes, mitochondria and lysosomes from rat brain homogenates. Arch Biochem Biophys 136(2):436–447

    Article  CAS  PubMed  Google Scholar 

  55. Cotman CW, Matthews DA (1971) Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochim Biophys Acta 249(2):380–394

    Article  CAS  PubMed  Google Scholar 

  56. Hajos F (1975) An improved method for the preparation of synaptosomal fractions in high purity. Brain Res 93(3):485–489

    Article  CAS  PubMed  Google Scholar 

  57. Cotman C, Herschman H, Taylor D (1971) Subcellular fractionation of cultured glial cells. J Neurobiol 2(2):169–180

    Article  CAS  PubMed  Google Scholar 

  58. Whittaker VP (1968) The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochem J 106(2):412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van der Krogt JA, Koot-Gronsveld E, Van den Berg CJ (1983) Subcellular fractionation of striatum: sedimentation properties of dopaminergic synaptosomes. Life Sci 33(7):605–613

    Article  PubMed  Google Scholar 

  60. Kornguth SE, Anderson JW, Scott G (1969) Isolation of synaptic complexes in a caesium chloride density gradient: electron microscopic and immunohistochemical studies. J Neurochem 16(3):1017–1024

    Article  CAS  PubMed  Google Scholar 

  61. Autilio LA et al (1968) Biochemical studies of synapses in vitro. I. Protein synthesis. Biochemistry 7(7):2615–2622

    Article  CAS  PubMed  Google Scholar 

  62. Day ED et al (1971) Zonal centrifuge profiles of rat brain homogenates - instability in sucrose, stability in Iso-Osomotic Ficoll-sucrose. Anal Biochem 39(1):29–45

    Article  CAS  PubMed  Google Scholar 

  63. Booth RF, Clark JB (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J 176(2):365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Verity MA (1972) Cation modulation of synaptosomal respiration. J Neurochem 19(5):1305–1317

    Article  CAS  PubMed  Google Scholar 

  65. Jansen GJ, Vaneerten MTW, Forrester IT (1982) Biochemical events associated with Ficoll washing of ram spermatozoa. Proc N Z Soc Anim Prod 42:95–97

    Google Scholar 

  66. Asgeirsson D et al (2006) Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am J Physiol Renal Physiol 291(5):F1083–F1089

    Article  CAS  PubMed  Google Scholar 

  67. Harrison SM, Jarvie PE, Dunkley PR (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res 441(1–2):72–80

    Article  CAS  PubMed  Google Scholar 

  68. Docherty M, Bradford HF, Wu JY (1987) The preparation of highly purified GABAergic and cholinergic synaptosomes from mammalian brain. Neurosci Lett 81(1–2):232–238

    Article  CAS  PubMed  Google Scholar 

  69. Bowman D, Smith W, Mccormack A (1995) Affinity purification of rat cortical and chicken forebrain synaptosomes using a biotinylated derivative of omega-Cgtx Gvia. Neuropharmacology 34(7):743–752

    Article  CAS  PubMed  Google Scholar 

  70. Bowman D et al (1994) Affinity purification of synaptosomes using a biotinylated derivative of Omega-Conotoxin Gvia. Br J Pharmacol 112:U176–U176

    Article  Google Scholar 

  71. Enriquez JA et al (1990) Rat brain synaptosomes prepared by phase partition. J Neurochem 55(6):1841–1849

    Article  CAS  PubMed  Google Scholar 

  72. Muino-Blanco T et al (1993) Use of a resolving density gradient created with dextran and poly(ethylene glycol) to purify brain synaptosomes. J Biochem Biophys Methods 27(1):1–10

    Article  CAS  PubMed  Google Scholar 

  73. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22(9):735–742

    Article  CAS  PubMed  Google Scholar 

  74. Robinson PJ et al (1994) Phosphorylation of dynamin-I and synaptic-vesicle recycling. Trends Neurosci 17(8):348–353

    Article  CAS  PubMed  Google Scholar 

  75. Wolf ME, Kapatos G (1989) Flow cytometric analysis of rat striatal nerve terminals. J Neurosci 9(1):94–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gylys KH, Fein JA, Cole GM (2000) Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J Neurosci Res 61(2):186–192

    Article  CAS  PubMed  Google Scholar 

  77. Wolf ME, Zigmond MJ, Kapatos G (1989) Tyrosine hydroxylase content of residual striatal dopamine nerve terminals following 6-hydroxydopamine administration: a flow cytometric study. J Neurochem 53(3):879–885

    Article  CAS  PubMed  Google Scholar 

  78. Sokolow S et al (2012) Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry A 81(3):248–254

    Article  PubMed  Google Scholar 

  79. Wang DS et al (2005) Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. J Neuropathol Exp Neurol 64(5):378–385

    Article  CAS  PubMed  Google Scholar 

  80. Sokolow S et al (2015) Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem 133(3):368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gylys KH, Bilousova T (2017) Flow cytometry analysis and quantitative characterization of tau in synaptosomes from Alzheimer’s disease brains. Methods Mol Biol 1523:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Postupna NO et al (2014) Flow cytometry analysis of synaptosomes from post-mortem human brain reveals changes specific to Lewy body and Alzheimer’s disease. Lab Investig 94(10):1161–1172

    Article  CAS  PubMed  Google Scholar 

  83. Biesemann C et al (2014) Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 33(2):157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luquet E et al (2017) Purification of synaptosome populations using fluorescence-activated synaptosome sorting. Methods Mol Biol 1538:121–134

    Article  CAS  PubMed  Google Scholar 

  85. Daniel JA et al (2012) Analysis of synaptic vesicle endocytosis in synaptosomes by high-content screening. Nat Protoc 7(8):1439–1455

    Article  CAS  PubMed  Google Scholar 

  86. Choi SW, Gerencser AA, Nicholls DG (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109(4):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marcelli S et al (2016) Targeting SUMO-1ylation contrasts synaptic dysfunction in a mouse model of Alzheimer’s disease. Mol Neurobiol 54(8):6609–6623

    Article  PubMed  Google Scholar 

  88. Chi P, Greengard P, Ryan TA (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38(1):69–78

    Article  CAS  PubMed  Google Scholar 

  89. Darcy KJ et al (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9(3):315–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all of our colleagues who have helped to develop the Percoll gradient procedure for preparation of synaptosomes [9, 11, 26, 30, 67] for their hard work, camaraderie, and intellectual input. The NHMRC of Australia is thanked for past funding of projects arising from the use of synaptosomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Dunkley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunkley, P.R., Robinson, P.J. (2018). Synaptosome Preparations: Which Procedure Should I Use?. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics