Advertisement

Synaptosomes pp 269-286 | Cite as

Use of Synaptoneurosome Samples to Study Development and Plasticity of Human Cortex

  • Caitlin R. Siu
  • Simon P. Beshara
  • Justin L. Balsor
  • Steven J. Mancini
  • Kathryn M. Murphy
Protocol
Part of the Neuromethods book series (NM, volume 141)

Abstract

Translation from animal models of visual system development and plasticity to human studies is difficult due to many obstacles in comparing results. Animal models provide important data about the neurobiological mechanisms that support cortical function and behavior, but identifying the same mechanisms in human cortex can be challenging. Many neurobiological techniques used in animal models cannot be used in humans, hindering our understanding of visual system development in the human brain. Western blotting using synaptoneurosomes prepared from postmortem human tissue, however, is a simple and reliable way to study synaptic protein expression in both animal and human brains. Synaptic proteins are linked with specific aspects of visual system development and plasticity necessary to establish functional neural circuitry. Our lab has implemented a filtered synaptoneurosome preparation using human cortical tissue to study the development of human visual cortex. This approach provides human researchers with much-needed information about neurobiological development and potential targets for treatments or therapies of visual disorders that have been previously tested in animal models. The protocol detailed in this chapter provides the step-by-step information needed for making synaptoneurosomes from human postmortem brain tissue, testing and equating antibodies for Western blotting using human brain tissue, and studying the expression of synaptic proteins. We provide strengths and limitations for using synaptoneurosomes to link structure and function in the human brain. This chapter highlights Western blotting of human synaptoneurosomes as an effective tool for studying the human brain and helping to narrow the translation gap.

Key words

Human Visual cortex Postmortem Western blotting Synaptic proteins Synaptoneurosome Translation Synaptic plasticity Development 

References

  1. 1.
    Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017CrossRefGoogle Scholar
  2. 2.
    Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243CrossRefGoogle Scholar
  3. 3.
    Mukamel R, Ekstrom AD, Kaplan J et al (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20:750–756.  https://doi.org/10.1016/j.cub.2010.02.045CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186.  https://doi.org/10.1038/35004582CrossRefGoogle Scholar
  5. 5.
    Hensch TK, Fagiolini M (2005) Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res 147:115–124.  https://doi.org/10.1016/S0079-6123(04)47009-5CrossRefPubMedGoogle Scholar
  6. 6.
    Meuwese JDI, van Loon AM, Scholte HS et al (2013) NMDA receptor antagonist ketamine impairs feature integration in visual perception. PLoS One 8:e79326.  https://doi.org/10.1371/journal.pone.0079326CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Levelt CN, Hübener M (2012) Critical-period plasticity in the visual cortex. Annu Rev Neurosci 35:309–330.  https://doi.org/10.1146/annurev-neuro-061010-113813CrossRefPubMedGoogle Scholar
  8. 8.
    Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170.  https://doi.org/10.1016/j.neuron.2011.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division and subtraction by distinct cortical inhibitory networks in vivo. Nat Publ Group 488:343–348.  https://doi.org/10.1038/nature11347CrossRefGoogle Scholar
  10. 10.
    Lee S-H, Kwan AC, Zhang S et al (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nat Publ Group 488:379–383.  https://doi.org/10.1038/nature11312CrossRefGoogle Scholar
  11. 11.
    Engel SA (1994) fMRI of human visual-cortex. Nature 369(6481):525CrossRefGoogle Scholar
  12. 12.
    Engel S, Zhang XM, Wandell B (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388:68–71.  https://doi.org/10.1038/40398CrossRefPubMedGoogle Scholar
  13. 13.
    Polonsky A, Blake R, Braun T, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3:1153–1159.  https://doi.org/10.1038/80676CrossRefPubMedGoogle Scholar
  14. 14.
    Haynes J-D, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691.  https://doi.org/10.1038/nn1445CrossRefGoogle Scholar
  15. 15.
    Lunghi C, Berchicci M, Morrone MC, Di Russo F (2015) Short-term monocular deprivation alters early components of visual evoked potentials. J Physiol 593:4361–4372.  https://doi.org/10.1113/JP270950CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mirsattari SM, Bihari F, Leung LS et al (2005) Physiological monitoring of small animals during magnetic resonance imaging. J Neurosci Methods 144:207–213.  https://doi.org/10.1016/j.jneumeth.2004.11.019CrossRefPubMedGoogle Scholar
  17. 17.
    Fagiolini M, Katagiri H, Miyamoto H et al (2003) Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc Natl Acad Sci 100:2854–2859.  https://doi.org/10.1073/pnas.0536089100CrossRefPubMedGoogle Scholar
  18. 18.
    Ramoa AS, Mower AF, Liao D, Jafri S (2001) Suppression of cortical NMDA receptor function prevents development of orientation selectivity in the primary visual cortex. J Neurosci 21:4299–4309CrossRefGoogle Scholar
  19. 19.
    Rivadulla C, Sharma J, Sur M (2001) Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J Neurosci 21:1710–1719CrossRefGoogle Scholar
  20. 20.
    Hensch TK, Fagiolini M, Mataga N et al (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508.  https://doi.org/10.1126/science.282.5393.1504CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29:157–169CrossRefGoogle Scholar
  22. 22.
    Larsen RS, Smith IT, Miriyala J et al (2014) Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors. Neuron 83:879–893.  https://doi.org/10.1016/j.neuron.2014.07.039CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG (2009) Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J Neurosci 29:6479–6489.  https://doi.org/10.1523/JNEUROSCI.3753-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Curley AA, Arion D, Volk DW et al (2011) Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 168:921–929.  https://doi.org/10.1176/appi.ajp.2011.11010052CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Barksdale KA, Lahti AC, Roberts RC (2014) Synaptic proteins in the post-mortem anterior cingulate cortex in schizophrenia: relationship to treatment and treatment response. Neuropsychopharmacology 39:2095–2103.  https://doi.org/10.1038/npp.2014.57CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Glantz LA, Gilmore JH, Overstreet DH et al (2010) Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophr Res 118:292–299.  https://doi.org/10.1016/j.schres.2009.12.027CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pinto JGA, Hornby KR, Jones DG, Murphy KM (2010) Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Front Cell Neurosci 4:16.  https://doi.org/10.3389/fncel.2010.00016CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Murphy KM, Beston BR, Boley PM, Jones DG (2005) Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. Dev Psychobiol 46:209–221.  https://doi.org/10.1002/dev.20053CrossRefPubMedGoogle Scholar
  29. 29.
    Glantz LA, Gilmore JH, Hamer RM et al (2007) Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience 149:582–591.  https://doi.org/10.1016/j.neuroscience.2007.06.036CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Quinlan EM, Olstein DH, Bear MF (1999) Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci 96:12876–12880CrossRefGoogle Scholar
  31. 31.
    Murphy KM, Balsor J, Beshara S et al (2014) A high-throughput semi-automated preparation for filtered synaptoneurosomes. J Neurosci Methods 235:35–40.  https://doi.org/10.1016/j.jneumeth.2014.05.036CrossRefPubMedGoogle Scholar
  32. 32.
    Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178CrossRefGoogle Scholar
  33. 33.
    Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891.  https://doi.org/10.1038/nature02661CrossRefPubMedGoogle Scholar
  34. 34.
    Ernst A, Alkass K, Bernard S et al (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083.  https://doi.org/10.1016/j.cell.2014.01.044CrossRefGoogle Scholar
  35. 35.
    Blair JA, Wang C, Hernandez D et al (2016) Individual case analysis of post-mortem interval time on brain tissue preservation. PLoS One 11:e0151615.  https://doi.org/10.1371/journal.pone.0151615CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kontur PJ, al-Tikriti M, Innis RB, Roth RH (1994) Post-mortem stability of monoamines, their metabolites, and receptor binding in rat brain regions. J Neurochem 62:282–290CrossRefGoogle Scholar
  37. 37.
    Siu CR, Beshara SP, Jones DG, Murphy KM (2017) Development of glutamatergic proteins in human visual cortex across the lifespan. J Neurosci 37:6031.  https://doi.org/10.1523/JNEUROSCI.2304-16.2017CrossRefPubMedGoogle Scholar
  38. 38.
    Lee H-G, Jo J, Hong H-H et al (2016) State-of-the-art housekeeping proteins for quantitative western blotting: revisiting the first draft of the human proteome. Proteomics 16:1863–1867.  https://doi.org/10.1002/pmic.201500344CrossRefPubMedGoogle Scholar
  39. 39.
    Michel AE, Garey LJ (1984) The development of dendritic spines in the human visual cortex. Hum Neurobiol 3:223–227PubMedGoogle Scholar
  40. 40.
    Petanjek Z, Judaš M, Šimic G et al (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 108:13281–13286.  https://doi.org/10.1073/pnas.1105108108CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dickstein DL, Weaver CM, Luebke JI, Hof PR (2013) Dendritic spine changes associated with normal aging. Neuroscience 251:21–32.  https://doi.org/10.1016/j.neuroscience.2012.09.077CrossRefGoogle Scholar
  42. 42.
    Pinto JGA, Jones DG, Murphy KM (2013) Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex. Front Neural Circuits 7:97.  https://doi.org/10.3389/fncir.2013.00097CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Uhlen M (2007) Mapping the human proteome using antibodies. Mol Cell Proteomics 6:1455–1456PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Caitlin R. Siu
    • 1
  • Simon P. Beshara
    • 1
  • Justin L. Balsor
    • 1
  • Steven J. Mancini
    • 1
  • Kathryn M. Murphy
    • 1
    • 2
  1. 1.McMaster Integrated Neuroscience Discovery and Study (MiNDS)McMaster UniversityHamiltonCanada
  2. 2.Department of Psychology, Neuroscience & BehaviorMcMaster UniversityHamiltonCanada

Personalised recommendations