Skip to main content

Genome Engineering of Hybridomas to Generate Stable Cell Lines for Antibody Expression

  • Protocol
  • First Online:
Recombinant Protein Expression in Mammalian Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1850))

Abstract

From the perspective of academic and small research laboratories, the most common and practical strategy for recombinant expression of full-length monoclonal antibodies is to perform transient plasmid transfection of mammalian cells, resulting in small-scale and limited protein production. The generation of stable antibody producing mammalian cell lines enables larger-scale and consistent expression, however this approach is rarely pursued due to the time-consuming and expensive process of single colony screening and characterization. In order to bridge the gap between the simplicity of transient transfection and consistent production by stable cell lines, we describe a method to stably integrate antibody genes into the endogenous immunogenomic loci of hybridoma cells using CRISPR/Cas9 genome editing. Initially, the antibody variable light (VL) chain is deleted by multiplexed Cas9 cleavage; subsequently, the variable heavy (VH) chain is replaced by a fluorescent reporter gene (mRuby) by Cas9-assisted homology-directed repair (HDR). This cell line is customized by replacing mRuby with a synthetic antibody (consisting of a VL, light constant region and VH) by once again using Cas9-assisted HDR. Due to hybridomas’ inherent ability to surface display and secrete antibodies, they provide a suitable host for both the selection and the production process, substantially streamlining the process for stable cell line generation, and thus we refer to this platform as plug-and-(dis)play (PnP) hybridomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  2. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15:773–780

    Article  CAS  Google Scholar 

  3. Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52

    Article  Google Scholar 

  4. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100:3451–3461

    Article  CAS  Google Scholar 

  5. Hacker DL, Balasubramanian S (2017) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136

    Article  Google Scholar 

  6. Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG (2009) A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 102:1182–1196

    Article  CAS  Google Scholar 

  7. Kim JY, Kim YG, Lee GM (2011) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  Google Scholar 

  8. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  Google Scholar 

  9. Shulman M, Wilde CD, Köhler G (1978) A better cell line for making hybridomas secreting specific antibodies. Nature 276:269–270

    Article  CAS  Google Scholar 

  10. Bradbury A, Plückthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518:27–29

    Article  CAS  Google Scholar 

  11. Gaj T, Gersbach CA, Barbas CFIII (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  Google Scholar 

  12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  13. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  Google Scholar 

  14. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  15. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  16. Milcarek C (2011) Hide and go seek: activation of the secretory-specific poly(A) site of IgH by transcription elongation factors. In: Grabowski P (ed), RNA processing, Intech, London, pp 1–35. https://doi.org/10.5772/21186

  17. Pogson M, Parola C, Kelton WJ, Heuberger P, Reddy ST (2016) Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat Commun 7:12535

    Article  CAS  Google Scholar 

  18. Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH, Hoi KH, Chrysostomou C, Hunicke-Smith SP, Iverson BL, Tucker PW, Ellington AD, Georgiou G (2010) Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 28:957–961

    Article  Google Scholar 

  19. Haessler U, Reddy ST (2014) Using next-generation sequencing for discovery of high-frequency monoclonal antibodies in the variable gene repertoires from immunized mice. Methods Mol Biol 1131:191–203

    Article  CAS  Google Scholar 

  20. Fields C, O'Connell D, Xiao S, Lee GU, Billiald P, Muzard J (2013) Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 8:1125–1148

    Article  Google Scholar 

  21. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  22. Gibson DC, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  23. Chng J, Wang T, Nian R, Lau A, Hoi KM, Ho SC, Gagnon P, Bi X, Yang Y (2015) Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. MAbs 7:403–412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai T. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parola, C., Mason, D.M., Zingg, A., Neumeier, D., Reddy, S.T. (2018). Genome Engineering of Hybridomas to Generate Stable Cell Lines for Antibody Expression. In: Hacker, D. (eds) Recombinant Protein Expression in Mammalian Cells. Methods in Molecular Biology, vol 1850. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8730-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8730-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8729-0

  • Online ISBN: 978-1-4939-8730-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics