Baek E, Noh SM, Lee GM (2017) Anti-apoptosis engineering for improved protein production from CHO cells. Methods Mol Biol 1603:71–85. https://doi.org/10.1007/978-1-4939-6972-2_5
CAS
CrossRef
PubMed
Google Scholar
Le Fourn V, Girod PA, Buceta M, Regamey A, Mermod N (2014) CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab Eng 21:91–102. https://doi.org/10.1016/j.ymben.2012.12.003
CAS
CrossRef
PubMed
Google Scholar
Josse L, Smales CM, Tuite MF (2012) Engineering the chaperone network of CHO cells for optimal recombinant protein production and authenticity. Methods Mol Biol 824:595–608. https://doi.org/10.1007/978-1-61779-433-9_32
CAS
CrossRef
PubMed
Google Scholar
Toussaint C, Henry O, Durocher Y (2016) Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. J Biotechnol 217:122–131. https://doi.org/10.1016/j.jbiotec.2015.11.010
CAS
CrossRef
PubMed
Google Scholar
Wang Q, Yin B, Chung CY, Betenbaugh MJ (2017) Glycoengineering of CHO cells to improve product quality. Methods Mol Biol 1603:25–44. https://doi.org/10.1007/978-1-4939-6972-2_2
CAS
CrossRef
PubMed
Google Scholar
Barron N, Sanchez N, Kelly P, Clynes M (2011) MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 33(1):11–21. https://doi.org/10.1007/s10529-010-0415-5
CAS
CrossRef
PubMed
Google Scholar
Jadhav V, Hackl M, Druz A, Shridhar S, Chung CY, Heffner KM, Kreil DP, Betenbaugh M, Shiloach J, Barron N, Grillari J, Borth N (2013) CHO microRNA engineering is growing up: recent successes and future challenges. Biotechnol Adv 31(8):1501–1513. https://doi.org/10.1016/j.biotechadv.2013.07.007
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242. https://doi.org/10.1146/annurev-genet-120213-092023
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282. https://doi.org/10.1038/nrg3162
CAS
CrossRef
PubMed
Google Scholar
Gammell P, Barron N, Kumar N, Clynes M (2007) Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol 130(3):213–218 S0168-1656(07)00289-1 [pii]
CAS
CrossRef
Google Scholar
Agrawal R, Pandey P, Jha P, Dwivedi V, Sarkar C, Kulshreshtha R (2014) Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genomics 15:686. https://doi.org/10.1186/1471-2164-15-686
CrossRef
PubMed
PubMed Central
Google Scholar
Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4(6):e5848. https://doi.org/10.1371/journal.pone.0005848
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011 67/22/11001 [pii]
CAS
CrossRef
Google Scholar
Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, Slezak-Prochazka I, Ding Y, Kroesen BJ, van den Berg A (2012) Rapid generation of microRNA sponges for microRNA inhibition. PLoS One 7(1):e29275. https://doi.org/10.1371/journal.pone.0029275
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kelly PS (2014) Enhancing CHO cell productivity through the stable depletion of microRNA-23. Dublin City University, Dublin
Google Scholar
Sanchez N, Kelly P, Gallaghe C, Lao NT, Clarke C, Clynes M, Barron N (2014) CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnol J 9(3):396–404. https://doi.org/10.1002/biot.201300325
CAS
CrossRef
PubMed
Google Scholar
Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep 5:8572. https://doi.org/10.1038/srep08572
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ronda C, Pedersen LE, Hansen HG, Kallehauge TB, Betenbaugh MJ, Nielsen AT, Kildegaard HF (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616. https://doi.org/10.1002/bit.25233
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6. https://doi.org/10.1038/srep22312
Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M, Ouyang H, Teng CB (2014) Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 4:3943. https://doi.org/10.1038/srep03943
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Griffith A, Kelly P, Vencken S, Lao N, Greene M, Clynes M, Barron N (2017) miR-CATCH identifies biologically active miRNA regulators of the pro-survival gene XIAP in Chinese hamster ovary cells. J Biotechnol. https://doi.org/10.1002/biot201700299
Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Predicting cell-specific productivity from CHO gene expression. J Biotechnol 151:159–165. https://doi.org/10.1016/j.jbiotec.2010.11.016
CAS
CrossRef
PubMed
Google Scholar