Microfluidic Transfection for High-Throughput Mammalian Protein Expression

  • Kristina Woodruff
  • Sebastian J. MaerklEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1850)


Mammalian synthetic biology and cell biology would greatly benefit from improved methods for highly parallel transfection, culturing, and interrogation of mammalian cells. Transfection is routinely performed on high-throughput microarrays, but this setup requires manual cell culturing and precludes precise control over the cell environment. As an alternative, microfluidic transfection devices streamline cell loading and culturing. Up to 280 transfections can be implemented on the chip at high efficiency. The culturing environment is tightly regulated and chambers physically separate the transfection reactions, preventing cross-contamination. Unlike typical biological assays that rely on end-point measurements, the microfluidic chip can be integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time.

Key words

Microfluidics Transfection Microarrays DNA array Protein array Surface chemistry Protein expression Mammalian cells High-throughput screening Automated microscopy 


  1. 1.
    Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178CrossRefGoogle Scholar
  2. 2.
    Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411:107–110CrossRefGoogle Scholar
  3. 3.
    Lueking A, Horn M, Eickhoff H, Büssow K, Lehrach H, Walter G (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270:103–111CrossRefGoogle Scholar
  4. 4.
    De Wildt RMT, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989–994CrossRefGoogle Scholar
  5. 5.
    MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532CrossRefGoogle Scholar
  6. 6.
    Lehner B, Fraser AG (2004) 5,000 RNAi experiments on a chip. Nat Methods 1:103–104CrossRefGoogle Scholar
  7. 7.
    Fujita S, Onuki-Nagasaki R, Fukuda J, Enomoto J, Yamaguchi S, Miyake M (2013) Development of super-dense transfected cell microarrays generated by piezoelectric inkjet printing. Lab Chip 13:77–80CrossRefGoogle Scholar
  8. 8.
    Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in drosophila. Nature 448:151–156CrossRefGoogle Scholar
  9. 9.
    Team MGC (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99:16899–16903CrossRefGoogle Scholar
  10. 10.
    Silva JM, Mizuno H, Brady A, Lucito R, Hannon GJ (2004) RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A 101:6548–6552CrossRefGoogle Scholar
  11. 11.
    Bailey SN, Ali SM, Carpenter AE, Higgins CO, Sabatini DM (2006) Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nat Methods 3:117–122CrossRefGoogle Scholar
  12. 12.
    Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M, Miyake J (2004) Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown. J Control Release 96:227–232CrossRefGoogle Scholar
  13. 13.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic Systems in Poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  14. 14.
    Gomez-Sjoeberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563CrossRefGoogle Scholar
  15. 15.
    Woodruff K, Maerkl SJ (2016) A high-throughput microfluidic platform for mammalian cell transfection and culturing. Sci Rep 6:23937CrossRefGoogle Scholar
  16. 16.
    Rockel S, Geertz M, Maerkl SJ (2012) MITOMI: a microfluidic platform for in vitro characterization of transcription factor–DNA interaction. Methods Mol Biol 786:97–114CrossRefGoogle Scholar
  17. 17.
    Baghdoyan S, Roupioz Y, Pitaval A, Castel D, Khomyakova E, Papine A, Gidrol X (2004) Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res 32:e77CrossRefGoogle Scholar
  18. 18.
    Sturzl M, Konrad A, Sander G, Wies E, Neipel F, Naschberger E, Kneser U (2008) High throughput screening of gene functions in mammalian cells using reversely transfected cell arrays: review and protocol. Comb Chem High Throughput Screen 11:159–172CrossRefGoogle Scholar
  19. 19.
    Conrad C, Erfle H, Warnat P, Daigle N, Lörch T, Ellenberg J, Eils R (2004) Automatic identification of subcellular phenotypes on human cell arrays. Genome Res 14:1130–1136CrossRefGoogle Scholar
  20. 20.
    Hessner M, Meyer L, Tackes J, Muheisen S, Wang X (2004) Immobilized probe and glass surface chemistry as variables in microarray fabrication. BMC Genomics 5:1–8CrossRefGoogle Scholar
  21. 21.
    Fidalgo LM, Maerkl SJ (2011) A software-programmable microfluidic device for automated biology. Lab Chip 11:1612–1619CrossRefGoogle Scholar
  22. 22.
    Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465CrossRefGoogle Scholar
  23. 23.
    Kolnik M, Tsimring LS, Hasty J (2012) Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture. Lab Chip 12:4732–4737CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Bioengineering, School of EngineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations