Abstract
It has recently been discovered that breastmilk is not sterile, but contains a vast array of microbes, known collectively as the breastmilk microbiome. The breastmilk microbiome field is in its infancy, but over the last decade, our understanding of the microbial communities that inhabit the human body has increased exponentially, due in large part to novel next-generation sequencing technologies. These culture-independent, high-throughput molecular technologies have allowed biologists to investigate the entirety of microbiota present in breastmilk, which was previously poorly known. These approaches are novel and the methodologies surrounding the exploration of the breastmilk microbiota remain in flux. The objectives of this chapter are to outline what is known thus far and detail the optimal methods and strategies to conducting a breastmilk microbiome study from subject recruitment and milk collection to DNA extraction, high-throughput sequencing and bioinformatics analyses.
Key words
- Breastmilk
- Breastfeeding
- Microbiome
- Lactation
- Bacteria
- Gastrointestinal tract
- DNA extraction
- 16S rRNA gene
- Illumina MiSeq
- Bioinformatics
This is a preview of subscription content, access via your institution.
Buying options
References
WHO (2014) World Health Organization: Breastfeeding [Online]. http://www.who.int/topics/breastfeeding/en/
Victoria CG, Bahl R, Barros AJD et al (2016) Breastfeeding in the 21st century: epidemiology, mechanisms and lifelong effect. Lancet 387:475–490
Herrmann K, Carroll K (2014) An exclusively human milk diet reduces necrotizing enterocolitis. Breastfeed Med 9(4):184–190
Horta BL, Victoria CG (2013) Short-term effects of breastfeeding: a systematic review of the benefits of breastfeeding on diarhhoea and pneumonia mortality. World Health Organization (WHO), Geneva
Rollins NC, Ndirangu J, Bland RM et al (2013) Exclusive breastfeeding, diarhoeal morbidity and all-cause mortality of HIV-infected and HIV uninfected mothers: a intervention cohort study in KwaZulu Natal, South Africa. PLoS One 8(12):e81307
Ward TL, Hosid S, Ioshikhes I et al (2013) Human milk metagenome: a functional capacity analysis. BMC Microbiol 13(116):1–12
Scholtens S, Brunekreef B, Smit HA et al (2008) Do differences in childhood diet explain the reduced overweight risk in breastfed children? Obesity 16:2498–2503
Horta BL, de Mola CL, Victora CG (2015) Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure, and type-2 diabetes: systematic review and meta-analysis. Acta Paediatr Suppl 104:30–37
Hassiotou F, Geddes DT, Hartmann PE (2013) Cells in human milk: state of the science. J Hum Lact 29(2):171–182
Lawrence RA, Lawrence RM (2016) Breastfeeding: a guide for the medical profession, 8th edition. Elsevier, Saunders
Cabrera-Rubio R, Collado MC, Laitinen K et al (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96(3):544–551
Fernandez L, Langa S, Martin V et al (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69(1):1–10
Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566
LeBouder E, Rey-Nores JE, Raby AC et al (2006) Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. J Immunol 176:3742–3752
Stockinger S, Hornef MW, Chassin C (2011) Establishment of intestinal homeostasis during the neonatal period. Cell Mol Life Sci 68:3699–3712
Candela M, Rampelli S, Turroni S et al (2012) Unbalance of intestinal microbiota in atopic children. BMC Microbiol 12:1–9
Kalliomaki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict over-weight. Am J Clin Nutr 87:534–538
White RA, Bjornholt JV, Baird DD et al (2013) Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol 9:e1003042
Carding S, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191. https://doi.org/10.3402/mehd.v26.26191
Jost T, Lacroix C, Braegger CP et al (2014) Vertical mother-neonata transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16(9):2891–2904
Martin V, Maldonado-Barragan A, Moles L et al (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44. https://doi.org/10.1177/0890334411424729
Morelli L (2008) Postnatal development of intestinal microflora as influenced by infant nutrition. J Nutr 138:1791S–1795S
Guaraldi F, Salvatori G (2012) Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2:94
Levy M, Thaiss CA, Elinav E (2015) Metagenomic cross-talk: the regulatory interplay between immunogenics and the microbiome. Genome Med 7:120. https://doi.org/10.1186/s13073-015-0249-9
Pang WW, Hartmann PE (2007) Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia 12(4):211–221
Godhia ML, Patel N (2013) Colostrum- its composition, benefits as a nutraceutical- a review. Curr Res Nutr Food Sci 1(1):37–47
Castellote C, Casillas R, Ramirez-Santana C et al (2011) Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr 141(6):1181–1187
Playford RJ, MacDonald CE, Johnson WS (2000) Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr 72(1):5–14
Bode L, Jantscher-Krenn E (2012) Structure-function relationships of human milk oligosaccharides. Adv Nutr 3(3):383S–391S
Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am 60(1):49–74
Urbaniak C, Angelini M, Gloor GB et al (2016) Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4:1–9
Hunt KM, Foster JA, Forney LJ et al (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6(6):E21313
Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22(3):251–254
Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975
Ramsay DT, Kent JC, Owens RA et al (2004) Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 113(2):361–367
Rescigno M, Urbano M, Valzasina B et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(361):1–7
Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665
Perez PF, Dore J, Leclerc M et al (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119(3):E724–E732
Donnet-Hughes A, Duc N, Serrant P et al (2000) Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-b. Immunol Cell Biol 78(1):74–79
Qutaishat SS, Stemper ME, Spencer SK et al (2003) Transmission of Salmonella entericaserotype typhimurium DT104 to infants through mother’s breastmilk. Pediatrics 111(6 Pt 1):1442–1446
Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 213(4):260–270
Dethlefsen L, Huse S, Sogin ML et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280. https://doi.org/10.1371/journal.pbio.0060280
Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561. https://doi.org/10.1073/pnas.1000087107
Ubeda C, Taur Y, Jenq RR et al (2010) Vancomycin-resistant enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341
Goodrich JK, Di Rienzi SC, Poole AC et al (2014) Conducting a microbiome study. Cell 158:250–262
Canadian Paediatric Society (2004) Weaning from the breast. Paediatr Child Health 9(4):249–253
Brand E, Kothari C, Stark MA (2011) Factors related to breastfeeding discontinuation between hospital discharge and 2 weeks postpartum. J Perinat Educ 20(1):36–44. https://doi.org/10.1891/1058-1243.20.1.36
Jones CA (2001) Maternal transmission of infectious pathogens in breastmilk. J Paediatr Child Health 37(6):576–582
Lovelady CA, Dewey KG, Picciano MF et al (2002) Guidelines for collection of human milk samples for monitoring and research of environmental chemicals. J Appl Toxicol Environ Health 65:1881–1891
Gionet L (2015) Breastfeeding trends in Canada. Statistics Canada Catalouge No. 82-624-X
Choo JM, Leong LEX, Rogers GB (2015) Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep 5:16350
Sergeant MJ, Constantinidou C, Cogan T et al (2012) High-throughput sequencing of 16S rRNA gene amplicons: effects of extraction procedure, primer length and annealing temperature. PLoS One 7(5):e38094
Koren O, Goodrich JK, Cullender TC et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480
Salcedo J, Gormaz M, Lopez-Mendoza MC, Nogarotto E, Silvestre D (2015) Human milk bactericidal properties: effect of lyophilization and relation to maternal factors and milk components. J Pediatr Gastroenterol Nutr 60(4):527–532
Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604
Wang Q, Garrity GM, Tiedje JM et al (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267
Price LB, Liu CM, Melendez JH et al (2009) Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4:e6462
Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59
Vazquez-Baeza Y, Pirrung M, Gonzalez A et al (2013) EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2:16
Mackenzie BW, Waite DW, Taylor MW (2015) Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Mircobiol 6:130. https://doi.org/10.3389/fmicb.2015.00130
Castelino M, Eyre S, Moat G et al (2017) Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiol 17:23. https://doi.org/10.1186/s12866-017-0927-4
Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervaribale regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 17:135
Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120
Martin R, Jimenez E, Heilig H et al (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75(4):965–969
Soto A, Martin V, Jimenez E et al (2014) Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr 59(1):78–88
Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B, Martin R, Gueimonde M, van Sinderen D et al (2013) Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One 8(7):e68739. https://doi.org/10.1371/journal.pone.0068739
Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP (2015) 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3:26
Sim K, Cox MJ, Wopereis H, Martin R, Knol J, Li MS, Cookson WO, Moffatt MF, Kroll JS (2012) Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing. PLoS One 7(3):e32543. https://doi.org/10.1371/journal.pone.0032543
Hayashi H, Sakamoto M, Benno Y (2004) Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal bifidobacterium spp. in healthy subjects. Microbiol Immunol 48(1):1–6
Highlander S (2014) Mock community analysis. Encyclopedia of Metagenomics. Springer, New York, pp 1–7
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143
Kunin V, Engelbrekston A, Ochman H et al (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123
Westcott SL, Schloss PD (2015) De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487
Dave V, Street K, Francis S et al (2016) Bacterial microbiome of breast milk and child saliva from low-income Mexican-American women and children. Pediatr Res 79(6):846–854
Williams JE, Carrothers JM, Lackey KA et al (2017) Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J Nutr 147(9):1739–1748
Kumar H, du Tolt E, Kulkarni A et al (2016) Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol 7:1619
Boix-Amoros A, Collado MC, Mira A (2016) Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 7:492
Pannaraj PS, Li F, Cerini C et al (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 171(7):647–654
Murphy K, Curley D, O’Callaghan TF et al (2017) The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 7:40597
Cabrera-Rubio R, Mira-Pascual L, Mira A et al (2016) Impact of mode of delivery of the milk microbiota composition of healthy women. J Dev Orig Health Dis 7(1):54–60
Patel SH, Vaidya YH, Patel RJ et al (2017) Culture independent assessment of human milk microbial community in lactational mastitis. Nat Sci Rep 7:7804
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
LeMay-Nedjelski, L. et al. (2018). Methods and Strategies to Examine the Human Breastmilk Microbiome. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_5
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8728-3_5
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8726-9
Online ISBN: 978-1-4939-8728-3
eBook Packages: Springer Protocols