Skip to main content

Characterization of Eukaryotic Microbiome Using 18S Amplicon Sequencing

  • Protocol
  • First Online:
Microbiome Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1849))

Abstract

With the advent of low-cost, high-throughput sequencing, taxonomic profiling of complex microbial communities through 16S rRNA marker gene surveys has received widespread interest, uncovering a wealth of information concerning the bacterial composition of microbial communities, as well as their association with health and disease. On the other hand, little is known concerning the eukaryotic components of microbiomes. Such components include single-celled parasites and multicellular worms that are known to adversely impact the health of millions of people worldwide. Current molecular methods to detect eukaryotic microbes rely on the use of directed PCR analyses that are limited by their inability to inform beyond the taxon targeted. With increasing interest to develop equivalent marker-based surveys as used for bacteria, this chapter presents a stepwise protocol to characterize the diversity of eukaryotic microbes in a sample, using amplicon sequencing of hypervariable regions in the eukaryotic 18S rRNA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. https://doi.org/10.1126/science.1124234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin F-PJ et al (2007) A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 3:112. https://doi.org/10.1038/msb4100153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50. https://doi.org/10.1016/j.cell.2012.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118. https://doi.org/10.1016/j.cell.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  5. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  6. Stanley SL Jr, Reed SL (2001) Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions. Am J Physiol Gastrointest Liver Physiol 280:G1049–G1054. https://doi.org/10.1152/ajpgi.2001.280.6.G1049

    Article  CAS  PubMed  Google Scholar 

  7. Upcroft P, Upcroft JA (2001) Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 14:150–164. https://doi.org/10.1128/cmr.14.1.150-164.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersen LO, Vedel Nielsen H, Stensvold CR (2013) Waiting for the human intestinal Eukaryotome. Isme j 7:1253–1255. https://doi.org/10.1038/ismej.2013.21

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parfrey LW et al (2014) Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front Microbiol 5:298. https://doi.org/10.3389/fmicb.2014.00298

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scanlan PD, Stensvold CR, Rajilic-Stojanovic M, Heilig HG, De Vos WM, O'Toole PW, Cotter PD (2014) The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol 90:326–330. https://doi.org/10.1111/1574-6941.12396

    Article  CAS  PubMed  Google Scholar 

  11. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416. https://doi.org/10.1038/nri3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9:e87624. https://doi.org/10.1371/journal.pone.0087624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hugerth LW et al (2014) Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One 9:e95567. https://doi.org/10.1371/journal.pone.0095567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loy A, Horn M, Wagner M (2003) probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31:514–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Machida RJ, Knowlton N (2012) PCR primers for metazoan nuclear 18S and 28S ribosomal DNA sequences. PLoS One 7:e46180. https://doi.org/10.1371/journal.pone.0046180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pawlowski J et al (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419. https://doi.org/10.1371/journal.pbio.1001419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian PY (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One 9:e90053. https://doi.org/10.1371/journal.pone.0090053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  19. Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372. https://doi.org/10.1371/journal.pone.0006372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hart ML, Meyer A, Johnson PJ, Ericsson AC (2015) Comparative Evaluation of DNA Extraction Methods from Feces of Multiple Host Species for Downstream Next-Generation Sequencing. PLoS One 10:e0143334. https://doi.org/10.1371/journal.pone.0143334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:8324–8329. https://doi.org/10.1073/pnas.062169599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim E et al (2011) Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci U S A 108:1496–1500. https://doi.org/10.1073/pnas.1013337108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carlton JM et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212. https://doi.org/10.1126/science.1132894

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511. https://doi.org/10.1038/nature01097

    Article  CAS  PubMed  Google Scholar 

  25. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196. https://doi.org/10.1186/gb-2007-8-9-r196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parfrey LW et al (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533. https://doi.org/10.1093/sysbio/syq037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF (2007) Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 17:1420–1425. https://doi.org/10.1016/j.cub.2007.07.036

    Article  CAS  PubMed  Google Scholar 

  29. Tekle YI, Grant JR, Kovner AM, Townsend JP, Katz LA (2010) Identification of new molecular markers for assembling the eukaryotic tree of life. Mol Phylogenet Evol 55:1177–1182. https://doi.org/10.1016/j.ympev.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  30. Bates ST, Berg-Lyons D, Lauber CL, Walters WA, Knight R, Fierer N (2012) A preliminary survey of lichen associated eukaryotes using pyrosequencing. Lichenologist 44:137–146. https://doi.org/10.1017/S0024282911000648

    Article  Google Scholar 

  31. Andrews S (2017) FastQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 6 Mar 2017

  32. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  34. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  35. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  36. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oksanen JB, Guillaume F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2017) Vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan

  38. Wickham H (2017) stringr: Simple, consistent wrappers for common string operations. R package version 1.2.0.

    Google Scholar 

  39. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20

    Article  Google Scholar 

  40. Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer, New York

    Book  Google Scholar 

  41. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  42. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeSantis TZ et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cole JR et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  46. Mercier C (2018) Sumaclust: fast and exact clustering of sequences. https://git.metabarcoding.org/obitools/sumaclust.git. Accessed 28 Jan 2018

  47. Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593. https://doi.org/10.7717/peerj.593

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226. https://doi.org/10.1128/aem.02810-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. https://doi.org/10.1093/bioinformatics/bts252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Parkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Popovic, A., Parkinson, J. (2018). Characterization of Eukaryotic Microbiome Using 18S Amplicon Sequencing. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8728-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8726-9

  • Online ISBN: 978-1-4939-8728-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics