Wolfs TF, Zwart G, Bakker M, Goudsmit J (1992) HIV-1 genomic RNA diversification following sexual and parenteral virus transmission. Virology 189:103–110
CAS
CrossRef
Google Scholar
Lipkin WI (2010) Microbe hunting. Microbiol Mol Biol Rev 74:363–377
CAS
CrossRef
Google Scholar
Beerenwinkel N, Günthard HF, Roth V, Metzner KJ (2012) Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol 3:329
CAS
CrossRef
Google Scholar
Holmes S, Huber W (2018) Modern statistics for modern biology. Cambridge University Press, Cambridge (in press)
Google Scholar
Aitchison J, Egozcue JJ (2005) Compositional data analysis: where are we and where should we be heading? Math Geol 37:829–850. https://doi.org/10.1007/s11004-005-7383-7
CrossRef
Google Scholar
Pearson K (1897) Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond 60:489–498. https://doi.org/10.1098/rspl.1896.0076
CrossRef
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336
CAS
CrossRef
Google Scholar
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541
CAS
CrossRef
Google Scholar
Efron B (2000) The bootstrap and modern statistics. J Am Stat Assoc 95:1293–1296
CrossRef
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643
CrossRef
Google Scholar
Kopylova E, Navas-Molina JA, Mercier C et al (2016) Open-source sequence clustering methods improve the state of the art. mSystems 1:e00003–e00015
Google Scholar
McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531
CrossRef
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583
CAS
CrossRef
Google Scholar
Li J, Tibshirani R (2013) Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat Methods Med Res 22:519–536
CrossRef
Google Scholar
Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517
CAS
CrossRef
Google Scholar
Rapaport F, Khanin R, Liang Y et al (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:R95
CrossRef
Google Scholar
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
RStudio Team (2016) RStudio: integrated development environment for r. RStudio, Inc., Boston, MA
Google Scholar
Huber W, Carey VJ et al (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121
CAS
CrossRef
Google Scholar
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217
CAS
CrossRef
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol 15:550
CrossRef
Google Scholar
Fernandes AD, Reid JN, Macklaim JM et al (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:1–13
CAS
CrossRef
Google Scholar
Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10:1200–1202. Advance online publication SP - EP -:1–6
CAS
CrossRef
Google Scholar
Zhou X, Lindsay H, Robinson MD (2014) Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res 42:e91
CAS
CrossRef
Google Scholar
Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47
Google Scholar
Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29
CrossRef
Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
Google Scholar
Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298
CAS
CrossRef
Google Scholar
Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121
CAS
CrossRef
Google Scholar
Fernandes AD, Macklaim JM, Linn TG et al (2013) ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8:e67019
CAS
CrossRef
Google Scholar
Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338
CrossRef
Google Scholar
Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107
CrossRef
Google Scholar
Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325
CrossRef
Google Scholar
Callahan B, Sankaran K, Fukuyama J et al (2016) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res 5:1492
CrossRef
Google Scholar
Palarea-Albaladejo J, Martín-Fernández JA (2015) zCompositions - R package for multivariate imputation of left-censored data under a compositional approach. Chemom Intell Lab Syst 143:85–96
CAS
CrossRef
Google Scholar
Gloor GB, Reid G (2016) Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol 62:692–703
CAS
CrossRef
Google Scholar
Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–4158. https://doi.org/10.1113/jphysiol.2009.174136
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kolde R, Franzosa EA, Rahnavard G et al (2018) Host genetic variation and its microbiome interactions within the human microbiome project. Genome Med 10:6. https://doi.org/10.1186/s13073-018-0515-8
CrossRef
PubMed
PubMed Central
Google Scholar
Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46
Google Scholar
James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, Berlin
CrossRef
Google Scholar