Skip to main content

Plant Small RNAs Responsive to Fungal Pathogen Infection

  • Protocol
  • First Online:
Plant Pathogenic Fungi and Oomycetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1848))

Abstract

Accumulating evidence indicates that small noncoding RNAs (sRNAs) can be transferred across species for interkingdom communication. In addition to the artificial transgene-derived small interfering RNAs (siRNAs), endogenous microRNAs (miRNAs) can also influence interacting organisms to execute a regulatory function. For instance, we have recently found that, in response to infection with Verticillium dahliae (V. dahliae), cotton plants increase accumulation of miR166 and miR159, which can be exported to the fungal hyphae for specific silencing of virulence genes. These findings suggest a great potential for applying interkingdom mobile miRNAs for crop protection against fungal pathogens. The methods described here provide an approach to identify plant miRNAs and their potential targets in invading fungal pathogens, which will help in revealing the underlying mechanisms of these crosstalk phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baulcombe D (2005) RNA silencing. Trends Biochem Sci 30:290–293

    Article  CAS  PubMed  Google Scholar 

  2. Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  4. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  5. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  8. Knip M, Constantin ME, Thordal-Christensen H (2014) Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet 10:e1004602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang M, Thomas N, Jin H (2017) Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol 38:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14alpha-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci U S A 110:19324–19329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghag SB, Shekhawat UK, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12:541–553

    Article  CAS  PubMed  Google Scholar 

  13. Nunes CC, Dean RA (2012) Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13:519–529

    Article  CAS  PubMed  Google Scholar 

  14. Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. Sp. tritici. Mol Plant-Microbe Interact 24:554–561

    Article  CAS  PubMed  Google Scholar 

  15. Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, Fang YY et al (2016) Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol Plant 9:939–942

    Article  CAS  PubMed  Google Scholar 

  16. Westwood JH, Roney JK, Khatibi PA, Stromberg VK (2009) RNA translocation between parasitic plants and their hosts. Pest Manag Sci 65:533–539

    Article  CAS  PubMed  Google Scholar 

  17. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  18. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  21. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta OP, Permar V, Koundal V, Singh UD, Praveen S (2012) MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp tritici infection. Mol Biol Rep 39:817–824

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F et al (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164:1077–1092

    Article  CAS  PubMed  Google Scholar 

  24. Feng H, Wang T, Feng CX, Zhang Q, Zhang XM, Huang LL et al (2016) Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. Sp tritici. Physiol Plantarum 157:95–107

    Article  CAS  Google Scholar 

  25. Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ et al (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2:16153

    Article  CAS  PubMed  Google Scholar 

  26. Liu SR, da Cunha AP, Rezende RM, Cialic R, Wei ZY, Bry L et al (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19:32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L et al (2012) Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12:187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou BJ, Jia PS, Gao F, Guo HS (2012) Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol Plant-Microbe Interact 25:964–975

    Article  CAS  PubMed  Google Scholar 

  29. de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ (2013) Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 23:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klosterman SJ, Subbarao KV, Kang SC, Veronese P, Gold SE, Thomma BPHJ et al (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7:e1002137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong L, Kakrana A, Arikit S, Meyers BC, Wendel JF (2013) Composition and expression of conserved microRNA genes in diploid cotton (Gossypium) species. Genome Biol Evol 5:2449–2459

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu NA, Tu LL, Tang WX, Gao WH, Lindsey K, Zhang XL (2014) Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. Plant J 80:331–344

    Article  CAS  PubMed  Google Scholar 

  33. Frandsen RJ, Frandsen M, Giese H (2012) Targeted gene replacement in fungal pathogens via agrobacterium tumefaciens- mediated transformation. Methods Mol Biol 835:17–45

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Xing H, Hua C, Guo HS, Zhang J (2016) An improved single-step cloning strategy simplifies the agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption method for Verticillium dahliae. Phytopathology 106:645–652

    Article  CAS  PubMed  Google Scholar 

  35. Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL et al (2010) A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One 5:e15319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takemoto D, Tanaka A, Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (31730078 to H.S.G. and 31700131 to Y.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, Y., Guo, HS. (2018). Plant Small RNAs Responsive to Fungal Pathogen Infection. In: Ma, W., Wolpert, T. (eds) Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology, vol 1848. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8724-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8724-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8723-8

  • Online ISBN: 978-1-4939-8724-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics