Skip to main content

Development of Tools for the Selective Visualization and Quantification of TLS-Immune Cells on Tissue Sections

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1845))

Abstract

Tertiary lymphoid structures (TLS) are considered as genuine markers of inflammation. Their presence within inflamed tissues or within the tumor microenvironment has been associated with the local development of an active immune response. While high densities of TLS are correlated with disease severity in autoimmune diseases or during graft rejection, it has been associated with longer patient survival in many cancer types. Their efficient visualization and quantification within human tissues may represent new tools for helping clinicians in adjusting their therapeutic strategy. Some immunohistochemistry (IHC) protocols are already used in the clinic to appreciate the level of immune infiltration in formalin-fixed, paraffin-embedded (FFPE) tissues. However, the use of two or more markers may sometimes be useful to better characterize this immune infiltrate, especially in the case of TLS. Besides the growing development of multiplex labeling approaches, imaging can also be used to overcome some technical difficulties encountered during the immunolabeling of tissues with several markers.

This chapter describes IHC methods to visualize in a human tissue (tumoral or not) the presence of TLS. These methods are based on the immunostaining of four TLS-associated immune cell populations, namely follicular B cells, follicular dendritic cells (FDCs), mature dendritic cells (mDCs), and follicular helper T cells (TFH), together with non-TFH T cells. Methodologies for subsequent quantification of TLS density are also proposed, as well as a virtual multiplexing method based on image registration using the open-source software ImageJ (IJ), aiming at co-localizing several immune cell populations from different IHC stainings performed on serial tissue sections.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

AID:

Activation-induced cytidine deaminase

AP:

Alkaline phosphatase

APAAP:

Alkaline phosphatase anti-alkaline phosphatase

Bcl6:

B-cell lymphoma 6

CSR:

Class-switch recombination

FDC:

Follicular dendritic cell

FFPE:

Formalin-fixed, paraffin-embedded

GC:

Germinal center

HRP:

Horseradish peroxidase

HS:

Human serum

IF:

Immunofluorescence

IHC:

Immunohistochemistry

IJ:

ImageJ

mDC:

Mature dendritic cell

NSCLC:

Non-small cell lung cancer

RA:

Rheumatoid arthritis

ROA:

Region of analysis

ROI:

Region of interest

SHM:

Somatic hypermutation

SIFT:

Scale invariant feature transform

SLO:

Secondary lymphoid organ

TFH :

Follicular helper T cell

TLS:

Tertiary lymphoid structure

WSI:

Whole-slide image

References

  1. Dieu-Nosjean M-C, Antoine M, Danel C et al (2008) Long-term survival for patients with non–small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417

    Article  CAS  PubMed  Google Scholar 

  2. Germain C, Gnjatic S, Tamzalit F et al (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189:832–844

    Article  CAS  PubMed  Google Scholar 

  3. Thaunat O, Patey N, Morelon E et al (2006) Lymphoid neogenesis in chronic rejection: the murderer is in the house. Curr Opin Immunol 18:576–579

    Article  CAS  PubMed  Google Scholar 

  4. Cipponi A, Mercier M, Seremet T et al (2012) Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 72:3997–4007

    Article  CAS  PubMed  Google Scholar 

  5. Gottlin EB, Bentley RC, Campa MJ et al (2011) The Association of Intratumoral Germinal Centers with early-stage non-small cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 6:1687–1690

    Google Scholar 

  6. Goc J, Germain C, Vo-Bourgais TKD et al (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74:705–715

    Article  CAS  PubMed  Google Scholar 

  7. Teillaud J-L, Dieu-Nosjean M-C (2017) Tertiary lymphoid structures: an anti-tumor school for adaptive immune cells and an antibody factory to fight cancer? Front Immunol 8:830

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drayton DL, Liao S, Mounzer RH et al (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353

    Article  CAS  PubMed  Google Scholar 

  9. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  CAS  PubMed  Google Scholar 

  10. Dieu-Nosjean M-C, Goc J, Giraldo NA et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35:571–580

    Article  CAS  PubMed  Google Scholar 

  11. Neyt K, Perros F, GeurtsvanKessel CH et al (2012) Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 33:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baddoura FK, Nasr IW, Wrobel B et al (2005) Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 5:510–516

    Article  Google Scholar 

  13. Kerjaschki D, Regele HM, Moosberger I et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol JASN 15:603–612

    Article  CAS  PubMed  Google Scholar 

  14. Thaunat O, Patey N, Caligiuri G et al (2010) Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J Immunol Baltim Md 1950 185:717–728

    CAS  Google Scholar 

  15. Thaunat O, Field A-C, Dai J et al (2005) Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc Natl Acad Sci U S A 102:14,723–14,728

    Article  CAS  Google Scholar 

  16. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K et al (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10:927–934

    Article  CAS  PubMed  Google Scholar 

  17. Messina JL, Fenstermacher DA, Eschrich S et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coppola D, Nebozhyn M, Khalil F et al (2011) Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 179:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gu-Trantien C, Loi S, Garaud S et al (2013) CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123:2873–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wirsing AM, Rikardsen OG, Steigen SE et al (2014) Characterisation and prognostic value of tertiary lymphoid structures in oral squamous cell carcinoma. BMC Clin Pathol 14:38

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sautès-Fridman C, Lawand M, Giraldo NA et al (2016) Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol 7:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glass G, Papin JA, Mandell JW (2009) SIMPLE: a sequential immunoperoxidase labeling and erasing method. J Histochem Cytochem Off J Histochem Soc 57:899–905

    Article  CAS  Google Scholar 

  23. Potts S, Johnson T, Voelker F, et al (2014) Methods for feature analysis on consecutive tissue sections, http://www.freepatentsonline.com/8787651.html

  24. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  26. Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deroulers C, Ameisen D, Badoual M et al (2013) Analyzing huge pathology images with open source software. Diagn Pathol 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  29. Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process Publ IEEE Signal Process Soc 7:27–41

    Article  Google Scholar 

  30. Arganda-Carreras I, Sorzano COS, Marabini R et al (2006) Consistent and elastic registration of histological sections using vector-spline regularization. In: Beichel RR, Sonka M (eds) Computer vision approaches to medical image analysis. Springer, Berlin, Heidelberg, pp 85–95

    Chapter  Google Scholar 

  31. Mueller D, Vossen D, Hulsken B (2011) Real-time deformable registration of multi-modal whole slides for digital pathology. Comput Med Imaging Graph Off J Comput Med Imaging Soc 35:542–556

    Article  Google Scholar 

  32. Moles Lopez X, Barbot P, Van Eycke Y-R et al (2015) Registration of whole immunohistochemical slide images: an efficient way to characterize biomarker colocalization. J Am Med Inform Assoc 22:86–99

    Article  PubMed  Google Scholar 

  33. Obando DFG, Frafjord A, Øynebråten I, et al (2017) Multi-staining registration of large histology images, In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 345–348

    Google Scholar 

  34. de CF, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  CAS  Google Scholar 

  35. Trahearn N, Epstein D, Cree I et al (2017) Hyper-stain inspector: a framework for robust registration and localised co-expression analysis of multiple whole-slide images of serial histology sections. Sci Rep 7:5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the “Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, Paris-Descartes University, the Labex Immuno-Oncology (LAXE62_9UMRS872 Fridman), CARPEM (Cancer Research for PErsonalized Medicine), Fondation ARC pour la Recherche sur le Cancer. Priyanka Devi-Marulkar was supported by a grant from the Fondation ARC pour la Recherche sur le Cancer. Claire Germain was supported by a grant from MedImmune LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Germain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klein, C., Devi-Marulkar, P., Dieu-Nosjean, MC., Germain, C. (2018). Development of Tools for the Selective Visualization and Quantification of TLS-Immune Cells on Tissue Sections. In: Dieu-Nosjean, MC. (eds) Tertiary Lymphoid Structures. Methods in Molecular Biology, vol 1845. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8709-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8709-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8708-5

  • Online ISBN: 978-1-4939-8709-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics