Advertisement

Generating Intracellular Modulators of E3 Ligases and Deubiquitinases from Phage-Displayed Ubiquitin Variant Libraries

  • Wei ZhangEmail author
  • Sachdev S. SidhuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1844)

Abstract

Ubiquitination is a posttranslational protein modification pathway regulating diverse cellular processes that are implicated in numerous human diseases. However, targeting the enzymes in the ubiquitination cascade potently and selectively remains a major challenge. Recently we devised a methodology to generate ubiquitin-based modulators for E3 ligases and deubiquitinases, enzymes that control the specificity of protein ubiquitination and deubiquitination, respectively. Here, we describe methods to generate libraries of ubiquitin variants and perform phage display selections to isolate high-affinity binders for target proteins. Importantly, the strategy introduced here can be applied to other small protein domains mediating protein-protein interactions to engineer tools for target validation and potential therapeutic development.

Key words

Phage display Combinatorial library Ubiquitin Inhibitor Activator E3 ligase Deubiquitinase 

Notes

Acknowledgments

We acknowledge the technical assistance and work summary from Mr. Jun Gu. We greatly appreciate the help from past and present collaborators, including Drs. Andreas Ernst, Jason Moffat, Brenda A. Schulman, J. Wade Harper, Daniela Rotin, Danny T. Huang, Brian L Mark, and Marjolein Kikkert. This work is supported by the Canadian Institutes of Health Research (CIHR) project grant (#0000303157) awarded to S.S.S.

References

  1. 1.
    Al-Hakim A, Escribano-Diaz C, Landry MC, O’Donnell L, Panier S, Szilard RK, Durocher D (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair 9(12):1229–1240.  https://doi.org/10.1016/j.dnarep.2010.09.011CrossRefPubMedGoogle Scholar
  2. 2.
    Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10(1):29–46.  https://doi.org/10.1038/nrd3321CrossRefPubMedGoogle Scholar
  3. 3.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229.  https://doi.org/10.1146/annurev-biochem-060310-170328CrossRefPubMedGoogle Scholar
  4. 4.
    Clague MJ, Liu H, Urbe S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23(3):457–467.  https://doi.org/10.1016/j.devcel.2012.08.011CrossRefPubMedGoogle Scholar
  5. 5.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479.  https://doi.org/10.1146/annurev.biochem.67.1.425CrossRefGoogle Scholar
  6. 6.
    Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786.  https://doi.org/10.1016/j.cell.2005.11.007CrossRefPubMedGoogle Scholar
  7. 7.
    Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5(7):596–613.  https://doi.org/10.1038/nrd2056CrossRefPubMedGoogle Scholar
  8. 8.
    Petroski MD (2008) The ubiquitin system, disease, and drug discovery. BMC Biochem 9(Suppl 1):S7.  https://doi.org/10.1186/1471-2091-9-S1-S7CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143(5):686–693.  https://doi.org/10.1016/j.cell.2010.11.016CrossRefPubMedGoogle Scholar
  10. 10.
    Harper JW, King RW (2011) Stuck in the middle: drugging the ubiquitin system at the e2 step. Cell 145(7):1007–1009.  https://doi.org/10.1016/j.cell.2011.06.002CrossRefPubMedGoogle Scholar
  11. 11.
    Maculins T, Fiskin E, Bhogaraju S, Dikic I (2016) Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res 26(4):499–510.  https://doi.org/10.1038/cr.2016.30CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lin YH, Machner MP (2017) Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 130(12):1985–1996.  https://doi.org/10.1242/jcs.188482CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL (2017) Structure and function of viral deubiquitinating enzymes. J Mol Biol 429:3441.  https://doi.org/10.1016/j.jmb.2017.06.010CrossRefPubMedGoogle Scholar
  14. 14.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617.  https://doi.org/10.1056/NEJMoa030288CrossRefGoogle Scholar
  15. 15.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498.  https://doi.org/10.1056/NEJMoa043445CrossRefGoogle Scholar
  16. 16.
    Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, Alberts P, Persaud A, Walker JR, Neculai AM, Neculai D, Vorobyov A, Garg P, Beatty L, Chan PK, Juang YC, Landry MC, Yeh C, Zeqiraj E, Karamboulas K, Allali-Hassani A, Vedadi M, Tyers M, Moffat J, Sicheri F, Pelletier L, Durocher D, Raught B, Rotin D, Yang J, Moran MF, Dhe-Paganon S, Sidhu SS (2013) A strategy for modulation of enzymes in the ubiquitin system. Science 339(6119):590–595.  https://doi.org/10.1126/science.1230161CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang W, Sidhu SS (2014) Development of inhibitors in the ubiquitination cascade. FEBS Lett 588(2):356–367.  https://doi.org/10.1016/j.febslet.2013.11.003CrossRefPubMedGoogle Scholar
  18. 18.
    Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322.  https://doi.org/10.1146/annurev-biochem-051810-094654CrossRefPubMedGoogle Scholar
  19. 19.
    Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA (2016) Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165(6):1440–1453.  https://doi.org/10.1016/j.cell.2016.05.037CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gorelik M, Orlicky S, Sartori MA, Tang X, Marcon E, Kurinov I, Greenblatt JF, Tyers M, Moffat J, Sicheri F, Sidhu SS (2016) Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface. Proc Natl Acad Sci U S A 113(13):3527–3532.  https://doi.org/10.1073/pnas.1519389113CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Leung I, Dekel A, Shifman JM, Sidhu SS (2016) Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21. Proc Natl Acad Sci U S A 113:8705.  https://doi.org/10.1073/pnas.1524648113CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS (2016) System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol Cell 62(1):121–136.  https://doi.org/10.1016/j.molcel.2016.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Manczyk N, Yates BP, Veggiani G, Ernst A, Sicheri F, Sidhu SS (2017) Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alpha-helical ubiquitin interacting motif. Protein Sci 26:1060.  https://doi.org/10.1002/pro.3155CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang W, Bailey-Elkin BA, Knaap RCM, Khare B, Dalebout TJ, Johnson GG, van Kasteren PB, McLeish NJ, Gu J, He W, Kikkert M, Mark BL, Sidhu SS (2017) Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLoS Pathog 13(5):e1006372.  https://doi.org/10.1371/journal.ppat.1006372CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang W, Sartori MA, Makhnevych T, Federowicz KE, Dong X, Liu L, Nim S, Dong A, Yang J, Li Y, Haddad D, Ernst A, Heerding D, Tong Y, Moffat J, Sidhu SS (2017) Generation and validation of intracellular ubiquitin variant inhibitors for USP7 and USP10. J Mol Biol 429:3546.  https://doi.org/10.1016/j.jmb.2017.05.025CrossRefPubMedGoogle Scholar
  26. 26.
    Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, Bader GD, Sidhu SS (2010) Coevolution of PDZ domain-ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol BioSyst 6(10):1782–1790.  https://doi.org/10.1039/c0mb00061bCrossRefGoogle Scholar
  27. 27.
    Maspero E, Polo S (2016) In vitro ubiquitination: self-ubiquitination, chain formation, and substrate ubiquitination assays. Methods Mol Biol 1449:153–160.  https://doi.org/10.1007/978-1-4939-3756-1_7CrossRefPubMedGoogle Scholar
  28. 28.
    Azkargorta M, Escobes I, Elortza F, Matthiesen R, Rodriguez MS (2016) TUBEs-mass spectrometry for identification and analysis of the ubiquitin-proteome. Methods Mol Biol 1449:177–192.  https://doi.org/10.1007/978-1-4939-3756-1_9CrossRefPubMedGoogle Scholar
  29. 29.
    Sigismund S, Polo S (2016) Strategies to detect endogenous ubiquitination of a target mammalian protein. Methods Mol Biol 1449:143–151.  https://doi.org/10.1007/978-1-4939-3756-1_6CrossRefPubMedGoogle Scholar
  30. 30.
    Furukawa M, Andrews PS, Xiong Y (2005) Assays for RING family ubiquitin ligases. Methods Mol Biol 301:37–46.  https://doi.org/10.1385/1-59259-895-1:037CrossRefPubMedGoogle Scholar
  31. 31.
    Russell NS, Wilkinson KD (2005) Deubiquitinating enzyme purification, assay inhibitors, and characterization. Methods Mol Biol 301:207–219.  https://doi.org/10.1385/1-59259-895-1:207CrossRefPubMedGoogle Scholar
  32. 32.
    Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2(6):1368–1386.  https://doi.org/10.1038/nprot.2007.151CrossRefPubMedGoogle Scholar
  33. 33.
    Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363CrossRefGoogle Scholar
  34. 34.
    Thalassinos K, Grabenauer M, Slade SE, Hilton GR, Bowers MT, Scrivens JH (2009) Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal Chem 81(1):248–254.  https://doi.org/10.1021/ac801916hCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
  2. 2.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada
  3. 3.Department of Molecular GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations