Advertisement

Interpreting the Language of Polyubiquitin with Linkage-Specific Antibodies and Mass Spectrometry

  • Marissa L. MatsumotoEmail author
  • Erick R. Castellanos
  • Yi Jimmy Zeng
  • Donald S. KirkpatrickEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1844)

Abstract

Posttranslational modification of cellular proteins by ubiquitin serves a variety of functions. Among the multitude of ubiquitin substrates, ubiquitin itself is the most prevalent. For many years, the direct detection of polyubiquitin chains attached to cellular substrates was not practical, with cell biologists relegated to indirect approaches involving site-directed mutagenesis or in vitro biochemistry. Recent advances in two technologies—polyubiquitin linkage-specific antibodies and mass spectrometry proteomics, have overcome that limitation. Using one or both of these, the direct analysis of polyubiquitin chain linkages on cellular substrate proteins may be performed. This paper describes the complimentary nature of linkage-specific antibodies and mass spectrometry proteomics for the characterization of complex ubiquitin signals using lessons learned in early development of both technologies.

Key words

Ubiquitin Polyubiquitin chains Linkage-specific antibodies Mass spectrometry Ub-AQUA 

Notes

Acknowledgments

All authors are employees of Genentech Inc. and shareholders of the Roche group.

References

  1. 1.
    Varshavsky A (2012) The ubiquitin system, an immense realm. Annu Rev Biochem 81:167–176.  https://doi.org/10.1146/annurev-biochem-051910-094049CrossRefPubMedGoogle Scholar
  2. 2.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229.  https://doi.org/10.1146/annurev-biochem-060310-170328CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322.  https://doi.org/10.1146/annurev-biochem-051810-094654CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Emmerich CH, Ordureau A, Strickson S et al (2013) Activation of the canonical ikk complex by k63/m1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A 110:15247–15252.  https://doi.org/10.1073/pnas.1314715110CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meyer H-J, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157:910–921.  https://doi.org/10.1016/j.cell.2014.03.037CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K (2016) The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Mol Cell 64:251–266.  https://doi.org/10.1016/j.molcel.2016.09.014CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678.  https://doi.org/10.1016/j.cell.2008.07.039CrossRefPubMedGoogle Scholar
  8. 8.
    Wang H, Matsuzawa A, Brown SA et al (2008) Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci U S A 105:20197–20202.  https://doi.org/10.1073/pnas.0810461105CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tokunaga F, Sakata S, Saeki Y et al (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132.  https://doi.org/10.1038/ncb1821CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Matsumoto ML, Wickliffe KE, Dong KC et al (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484.  https://doi.org/10.1016/j.molcel.2010.07.001CrossRefPubMedGoogle Scholar
  11. 11.
    Matsumoto ML, Dong KC, Yu C et al (2012) Engineering and structural characterization of a linear polyubiquitin-specific antibody. J Mol Biol 418:134–144.  https://doi.org/10.1016/j.jmb.2011.12.053CrossRefPubMedGoogle Scholar
  12. 12.
    Newton K, Matsumoto ML, Ferrando RE et al (2012) Using linkage-specific monoclonal antibodies to analyze cellular ubiquitylation. Methods Mol Biol 832:185–196.  https://doi.org/10.1007/978-1-61779-474-2_13CrossRefPubMedGoogle Scholar
  13. 13.
    Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926.  https://doi.org/10.1038/nbt849CrossRefGoogle Scholar
  14. 14.
    Kirkpatrick DS, Hathaway NA, Hanna J et al (2006) Quantitative analysis of in vitro ubiquitinated cyclin b1 reveals complex chain topology. Nat Cell Biol 8:700–710.  https://doi.org/10.1038/ncb1436CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Phu L, Izrael-Tomasevic A, Matsumoto ML et al (2011) Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics 10:M110.003756.  https://doi.org/10.1074/mcp.M110.003756CrossRefGoogle Scholar
  16. 16.
    Kaiser SE, Riley BE, Shaler TA et al (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8:691–696.  https://doi.org/10.1038/nmeth.1649CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Castañeda CA, Kashyap TR, Nakasone MA, Krueger S, Fushman D (2013) Unique structural, dynamical, and functional properties of K11-linked polyubiquitin chains. Struct Lond Engl 1993(21):1168–1181.  https://doi.org/10.1016/j.str.2013.04.029CrossRefGoogle Scholar
  18. 18.
    Castañeda CA, Chaturvedi A, Camara CM, Curtis JE, Krueger S, Fushman D (2016) Linkage-specific conformational ensembles of non-canonical polyubiquitin chains. Phys Chem Chem Phys 18:5771–5788.  https://doi.org/10.1039/c5cp04601gCrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu Z, Gong Z, Jiang W-X et al (2015) Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition. eLife 4.  https://doi.org/10.7554/eLife.05767
  20. 20.
    Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D (2004) Solution conformation of lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279:7055–7063.  https://doi.org/10.1074/jbc.M309184200CrossRefPubMedGoogle Scholar
  21. 21.
    Ordureau A, Münch C, Harper JW (2015) Quantifying ubiquitin signaling. Mol Cell 58:660–676.  https://doi.org/10.1016/j.molcel.2015.02.020CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kirkpatrick DS, Weldon SF, Tsaprailis G, Liebler DC, Gandolfi AJ (2005) Proteomic identification of ubiquitinated proteins from human cells expressing his-tagged ubiquitin. Proteomics 5:2104–2111.  https://doi.org/10.1002/pmic.200401089CrossRefPubMedGoogle Scholar
  23. 23.
    Ohtake F, Saeki Y, Sakamoto K et al (2015) Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 16:192–201.  https://doi.org/10.15252/embr.201439152CrossRefPubMedGoogle Scholar
  24. 24.
    Cui J, Yao Q, Li S et al (2010) Glutamine deamidation and dysfunction of ubiquitin/nedd8 induced by a bacterial effector family. Science 329:1215–1218.  https://doi.org/10.1126/science.1193844CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qiu J, Sheedlo MJ, Yu K et al (2016) Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533:120–124.  https://doi.org/10.1038/nature17657CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bhogaraju S, Kalayil S, Liu Y et al (2016) Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167:1636–1649.e13.  https://doi.org/10.1016/j.cell.2016.11.019CrossRefPubMedGoogle Scholar
  27. 27.
    Ordureau A, Heo J-M, Duda DM et al (2015) Defining roles of parkin and ubiquitin phosphorylation by Pink1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A 112:6637–6642.  https://doi.org/10.1073/pnas.1506593112CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Erickson BK, Rose CM, Braun CR et al (2017) A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Mol Cell 65:361–370.  https://doi.org/10.1016/j.molcel.2016.12.005CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Seyfried NT, Xu P, Duong DM, Cheng D, Hanfelt J, Peng J (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169.  https://doi.org/10.1021/ac702516aCrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dong KC, Helgason E, Yu C et al (2011) Preparation of distinct ubiquitin chain reagents of high purity and yield. Struct Lond Engl 1993(19):1053–1063.  https://doi.org/10.1016/j.str.2011.06.010CrossRefGoogle Scholar
  31. 31.
    Bosanac I, Phu L, Pan B et al (2011) Modulation of K11-linkage formation by variable loop residues within UbcH5a. J Mol Biol 408:420–431.  https://doi.org/10.1016/j.jmb.2011.03.011CrossRefPubMedGoogle Scholar
  32. 32.
    Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M (2011) The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–781.  https://doi.org/10.1016/j.cell.2011.01.035CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dynek JN, Goncharov T, Dueber EC et al (2010) C-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209.  https://doi.org/10.1038/emboj.2010.300CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goncharov T, Niessen K, de Almagro MC et al (2013) OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 32:1103–1114CrossRefGoogle Scholar
  35. 35.
    de Almagro MC, Goncharov T, Newton K, Vucic D (2015) Cellular IAP proteins and Lubac differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis 6:e1800.  https://doi.org/10.1038/cddis.2015.158CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cunningham CN, Baughman JM, Phu L et al (2015) USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17:160–169.  https://doi.org/10.1038/ncb3097CrossRefGoogle Scholar
  37. 37.
    Ordureau A, Sarraf SA, Duda DM et al (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial parkin translocation and ubiquitin chain synthesis. Mol Cell 56:360–375.  https://doi.org/10.1016/j.molcel.2014.09.007CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Structural BiologyGenentech, Inc.South San FranciscoUSA
  2. 2.Department of Microchemistry, Proteomics and LipidomicsGenentech, Inc.South San FranciscoUSA

Personalised recommendations