Advertisement

Exploring the Regulation of Proteasome Function by Subunit Phosphorylation

  • Jordan J. S. VerPlank
  • Alfred L. GoldbergEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1844)

Abstract

Rates of degradation by the ubiquitin proteasome system depend not only on rates of ubiquitination, but also on the level of proteasome activity which can be regulated through phosphorylation of proteasome subunits. Many protein kinases have been proposed to influence proteasomal activity. However, for only two is there strong evidence that phosphorylation of a specific 26S subunit enhances the proteasome’s capacity to degrade ubiquitinated proteins and promotes protein breakdown in cells: (1) protein kinase A (PKA), which after a rise in cAMP phosphorylates the 19S subunit Rpn6, and (2) dual tyrosine receptor kinase 2 (DYRK2), which during S through M phases of the cell cycle phosphorylates the 19S ATPase subunit Rpt3. In this chapter, we review and discuss the different methods used to assess the impact of phosphorylation by these two kinases on proteasomal activity and intracellular protein degradation. In addition, we present one method to determine if phosphorylation is responsible for an observed increase in proteasomal activity and another to evaluate by Phos-tag gel electrophoresis whether a specific proteasome subunit is modified by phosphorylation. The methods reviewed and presented here should be useful in clarifying the roles of other kinases and other posttranslational modifications of proteasome subunits.

Key words

Proteasome phosphorylation Protein degradation Protein kinase Proteasome activation Protein homeostasis Protein kinase A DYRK2 Ubiquitin 

Notes

Acknowledgments

The methods described here were developed through research support to our laboratory from the NIH-NIGMS (R01 GM51923), Cure Alzheimer’s Fund, Muscular Dystrophy Association (MDA-419143), and Project A.L.S (2015-06).

References

  1. 1.
    VerPlank JJS, Goldberg AL (2017) Regulating protein breakdown through proteasome phosphorylation. Biochem J 474(19):3355–3371.  https://doi.org/10.1042/bcj20160809CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guo X, Huang X, Chen MJ (2017) Reversible phosphorylation of the 26S proteasome. Protein Cell 8(4):255–272.  https://doi.org/10.1007/s13238-017-0382-xCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lokireddy S, Kukushkin NV, Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci U S A 112(52):E7176–E7185.  https://doi.org/10.1073/pnas.1522332112CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, Dixon JE (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18(2):202–212.  https://doi.org/10.1038/ncb3289CrossRefGoogle Scholar
  5. 5.
    Ranek MJ, Terpstra EJ, Li J, Kass DA, Wang X (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128(4):365–376.  https://doi.org/10.1161/circulationaha.113.001971CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ranek MJ, Kost CK Jr, Hu C, Martin DS, Wang X (2014) Muscarinic 2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. J Mol Cell Cardiol 69:43–51.  https://doi.org/10.1016/j.yjmcc.2014.01.017CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284(39):26655–26665CrossRefGoogle Scholar
  8. 8.
    Um JW, Im E, Park J, Oh Y, Min B, Lee HJ, Yoon JB, Chung KC (2010) ASK1 negatively regulates the 26 S proteasome. J Biol Chem 285(47):36434–36446.  https://doi.org/10.1074/jbc.M110.133777CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Asai M, Tsukamoto O, Minamino T, Asanuma H, Fujita M, Asano Y, Takahama H, Sasaki H, Higo S, Asakura M, Takashima S, Hori M, Kitakaze M (2009) PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. J Mol Cell Cardiol 46(4):452–462.  https://doi.org/10.1016/j.yjmcc.2008.11.001CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE (2007) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282(31):22460–22471.  https://doi.org/10.1074/jbc.M702439200CrossRefPubMedGoogle Scholar
  11. 11.
    Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, Goldberg AL, Duff KE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22(1):46–53.  https://doi.org/10.1038/nm.4011CrossRefGoogle Scholar
  12. 12.
    Lokireddy S, VerPlank JJS, Zhao J, Davogusotto G, Parker B, James D, Richter E, Taegetmeyer H, Goldberg AL. Hormones, exercise, and fasting activate 26S proteasome function via cAMP-PKA pathway. Manuscript in revisionGoogle Scholar
  13. 13.
    Besche HC, Goldberg AL (2012) Affinity purification of mammalian 26S proteasomes using an ubiquitin-like domain. Methods Mol Biol 832:423–432.  https://doi.org/10.1007/978-1-61779-474-2_29CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    VerPlank JJS, Lokireddy S, Feltri ML, Goldberg AL, Wrabetz L (2018) Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia 66(2):379–395.  https://doi.org/10.1002/glia.23251CrossRefGoogle Scholar
  15. 15.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4(10):1513–1521.  https://doi.org/10.1038/nprot.2009.154CrossRefPubMedGoogle Scholar
  16. 16.
    Lee SH, Park Y, Yoon SK, Yoon JB (2010) Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J Biol Chem 285(53):41280–41289.  https://doi.org/10.1074/jbc.M110.182188CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, Zaal EA, van de Kooij B, Laufer S, Heck AJR, Borst J, Scheper W, Berkers CR, Ovaa H (2017) Proteasome activation by small molecules. Cell Chem Biol 24(6):725–736.e7.  https://doi.org/10.1016/j.chembiol.2017.05.010CrossRefPubMedGoogle Scholar
  18. 18.
    Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169(5):792–806.  https://doi.org/10.1016/j.cell.2017.04.023CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhao J, Zhai B, Gygi SP, Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 112(52):15790–15797.  https://doi.org/10.1073/pnas.1521919112CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483.  https://doi.org/10.1016/j.cmet.2007.11.004CrossRefGoogle Scholar
  21. 21.
    Filipcik P, Curry JR, Mace PD (2017) When worlds collide-mechanisms at the Interface between phosphorylation and ubiquitination. J Mol Biol 429(8):1097–1113.  https://doi.org/10.1016/j.jmb.2017.02.011CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115(6):715–725CrossRefGoogle Scholar
  23. 23.
    Cho-Park PF, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153(3):614–627.  https://doi.org/10.1016/j.cell.2013.03.040CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Besche HC, Sha Z, Kukushkin NV, Peth A, Hock EM, Kim W, Gygi S, Gutierrez JA, Liao H, Dick L, Goldberg AL (2014) Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 33(10):1159–1176.  https://doi.org/10.1002/embj.201386906CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marshall RS, McLoughlin F, Vierstra RD (2016) Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep 16(6):1717–1732.  https://doi.org/10.1016/j.celrep.2016.07.015CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harvard Medical SchoolBostonUSA

Personalised recommendations