Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation

  • Frederick C. StreichJr.
  • Christopher D. LimaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1844)


Most cellular functions rely on pathways that catalyze posttranslational modification of cellular proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. Like other posttranslational modifications that require distinct writers, readers, and erasers during signaling, Ub/Ubl pathways employ distinct enzymes that catalyze Ub/Ubl attachment, Ub/Ubl recognition, and Ub/Ubl removal. Ubl protein conjugation typically relies on parallel but distinct enzymatic cascades catalyzed by an E1-activating enzyme, an E2 carrier protein, and an E3 ubiquitin-like protein ligase. One major class of E3, with ca. 600 members, harbors RING or the RING-like SP-RING or Ubox domains. These RING/RING-like domains bind and activate the E2-Ubl thioester by stabilizing a conformation that is optimal for nucleophilic attack by the side chain residue (typically lysine) on the substrate. These RING/RING-like domains typically function together with other domains or protein complexes that often serve to recruit particular substrates. How these RING/RING-like E3 domains function to activate the E2-Ubl thioester while engaged with substrate remains poorly understood. We describe a strategy to generate and purify a unique E2Ubc9-UblSUMO thioester mimetic that can be cross-linked to the SubstratePCNA at Lys164, a conjugation site that is only observed in the presence of E3Siz1. We describe two techniques to cross-link the E2Ubc9-UblSUMO thioester mimetic active site to the site of modification on PCNA and the subsequent purification of these complexes. Finally, we describe the reconstitution and purification of the E2Ubc9-UblSUMO-PCNA complex with the E3Siz1 and purification that enabled its crystallization and structure determination. We think this technique can be extended to other E2-Ubl-substrate/E3 complexes to better probe the function and specificity of RING-based E3 Ubl ligases.

Key words

Ubiquitin Ubiquitin-like protein SUMO Smt3 E2-conjugating enzyme Ubc9 E3 Ligase Siz/PIAS PCNA Complex reconstitution Structure 



This work was supported in part by GM065872 and GM118080 (NIH/NIGMS, C.D.L) and P30CA008748 (NIH/National Cancer Institute). The content is the authors’ responsibility and does not represent the official views of the NIH. C.D.L is a Howard Hughes Medical Institute Investigator.


  1. 1.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180CrossRefGoogle Scholar
  2. 2.
    Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429CrossRefGoogle Scholar
  3. 3.
    Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871CrossRefGoogle Scholar
  4. 4.
    Rose IA, Warms JV (1983) An enzyme with ubiquitin carboxy-terminal esterase activity from reticulocytes. Biochemistry 22:4234–4237CrossRefGoogle Scholar
  5. 5.
    Pickart CM, Rose IA (1985) Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides. J Biol Chem 260:7903–7910PubMedGoogle Scholar
  6. 6.
    Mayer AN, Wilkinson KD (1989) Detection, resolution, and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus. Biochemistry 28:166–172CrossRefGoogle Scholar
  7. 7.
    Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207CrossRefGoogle Scholar
  8. 8.
    Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192CrossRefGoogle Scholar
  9. 9.
    Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A 77:1783–1786CrossRefGoogle Scholar
  10. 10.
    Schulman BA, Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10:319–331CrossRefGoogle Scholar
  11. 11.
    Streich FC Jr, Lima CD (2014) Structural and functional insights to ubiquitin-like protein conjugation. Annu Rev Biophys 43:357–379CrossRefGoogle Scholar
  12. 12.
    Streich FC, Haas AL (2010) Activation of ubiquitin and ubiquitin-like proteins. In: Groettrup M (ed) Conjugation and deconjugation of ubiquitin family modifiers. Landes Bioscience, Austin, pp 1–16Google Scholar
  13. 13.
    Cappadocia L, Lima CD (2018) Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev 118(3):889–918CrossRefGoogle Scholar
  14. 14.
    Haas AL, Rose IA (1982) The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 257:10329–10337PubMedGoogle Scholar
  15. 15.
    Haas AL, Warms JV, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548PubMedGoogle Scholar
  16. 16.
    Haas AL, Warms JV, Rose IA (1983) Ubiquitin adenylate: structure and role in ubiquitin activation. Biochemistry 22:4388–4394CrossRefGoogle Scholar
  17. 17.
    Pickart CM, Rose IA (1985) Functional-heterogeneity of ubiquitin carrier proteins. J Biol Chem 260:1573–1581PubMedGoogle Scholar
  18. 18.
    Haas AL, Bright PM (1988) The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J Biol Chem 263:13258–13267PubMedGoogle Scholar
  19. 19.
    Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214PubMedGoogle Scholar
  20. 20.
    Hershko A, Heller H, Eytan E, Reiss Y (1986) The protein substrate binding site of the ubiquitin-protein ligase system. J Biol Chem 261:11992–11999PubMedGoogle Scholar
  21. 21.
    Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96:11364–11369CrossRefGoogle Scholar
  22. 22.
    Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434CrossRefGoogle Scholar
  23. 23.
    Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484CrossRefGoogle Scholar
  24. 24.
    Barlow PN, Luisi B, Milner A, Elliott M, Everett R (1994) Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 237:201–211CrossRefGoogle Scholar
  25. 25.
    Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744CrossRefGoogle Scholar
  26. 26.
    Kahyo T, Nishida T, Yasuda H (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713–718CrossRefGoogle Scholar
  27. 27.
    Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275:223–231CrossRefGoogle Scholar
  28. 28.
    Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107:5–8CrossRefGoogle Scholar
  29. 29.
    Yunus AA, Lima CD (2009) Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol Cell 35:669–682CrossRefGoogle Scholar
  30. 30.
    Aravind L, Koonin EV (2000) The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol 10:R132–R134CrossRefGoogle Scholar
  31. 31.
    Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, McKenna S, Ptak C, Glover M, Shaw GS (2001) Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9:897–904CrossRefGoogle Scholar
  32. 32.
    Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692CrossRefGoogle Scholar
  33. 33.
    Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT (2012) BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat Struct Mol Biol 19:876–883CrossRefGoogle Scholar
  34. 34.
    Page RC, Pruneda JN, Amick J, Klevit RE, Misra S (2012) Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates. Biochemistry 51:4175–4187CrossRefGoogle Scholar
  35. 35.
    Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT (2012) Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489:115–120CrossRefGoogle Scholar
  36. 36.
    Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ, Brzovic PS, Klevit RE (2012) Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol Cell 47:933–942CrossRefGoogle Scholar
  37. 37.
    Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT (2013) Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat Struct Mol Biol 20:982–986CrossRefGoogle Scholar
  38. 38.
    Branigan E, Plechanovova A, Jaffray EG, Naismith JH, Hay RT (2015) Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Nat Struct Mol Biol 22:597–602CrossRefGoogle Scholar
  39. 39.
    Hodge CD, Ismail IH, Edwards RA, Hura GL, Xiao AT, Tainer JA, Hendzel MJ, Glover JN (2016) RNF8 E3 ubiquitin ligase stimulates Ubc13 E2 conjugating activity that is essential for DNA double strand break signaling and BRCA1 tumor suppressor recruitment. J Biol Chem 291:9396–9410CrossRefGoogle Scholar
  40. 40.
    Koliopoulos MG, Esposito D, Christodoulou E, Taylor IA, Rittinger K (2016) Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J 35:1204–1218CrossRefGoogle Scholar
  41. 41.
    Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ (2016) Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529:546–550CrossRefGoogle Scholar
  42. 42.
    Sanchez JG, Chiang JJ, Sparrer KM, Alam SL, Chi M, Roganowicz MD, Sankaran B, Gack MU, Pornillos O (2016) Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep 16:1315–1325CrossRefGoogle Scholar
  43. 43.
    Wagner JM, Roganowicz MD, Skorupka K, Alam SL, Christensen D, Doss G, Wan Y, Frank GA, Ganser-Pornillos BK, Sundquist WI, Pornillos O (2016) Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5alpha. elife 5:e16309CrossRefGoogle Scholar
  44. 44.
    Wright JD, Mace PD, Day CL (2016) Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity. Nat Struct Mol Biol 23:45–52CrossRefGoogle Scholar
  45. 45.
    Dove KK, Olszewski JL, Martino L, Duda DM, Wu XS, Miller DJ, Reiter KH, Rittinger K, Schulman BA, Klevit RE (2017) Structural studies of HHARI/UbcH7 approximately Ub reveal unique E2 approximately Ub conformational restriction by RBR RING1. Structure 25:890–900.e5CrossRefGoogle Scholar
  46. 46.
    Yuan L, Lv Z, Atkison JH, Olsen SK (2017) Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat Commun 8:211CrossRefGoogle Scholar
  47. 47.
    Dawidziak DM, Sanchez JG, Wagner JM, Ganser-Pornillos BK, Pornillos O (2017) Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase. Proteins 85:1957–1961CrossRefGoogle Scholar
  48. 48.
    Nomura K, Klejnot M, Kowalczyk D, Hock AK, Sibbet GJ, Vousden KH, Huang DT (2017) Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nat Struct Mol Biol 24:578–587CrossRefGoogle Scholar
  49. 49.
    Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C (2006) Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol 13:915–920CrossRefGoogle Scholar
  50. 50.
    Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, Stringer D, Piper RC, Schulman BA (2009) Insights into ubiquitin transfer cascades from a structure of a UbcH5B~ubiquitin-HECT(NEDD4L) complex. Mol Cell 36:1095–1102CrossRefGoogle Scholar
  51. 51.
    Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ (2009) Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139:957–968CrossRefGoogle Scholar
  52. 52.
    Kamadurai HB, Qiu Y, Deng A, Harrison JS, Macdonald C, Actis M, Rodrigues P, Miller DJ, Souphron J, Lewis SM, Kurinov I, Fujii N, Hammel M, Piper R, Kuhlman B, Schulman BA (2013) Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. elife 2:e00828CrossRefGoogle Scholar
  53. 53.
    Brown NG, VanderLinden R, Watson ER, Qiao R, Grace CR, Yamaguchi M, Weissmann F, Frye JJ, Dube P, Ei Cho S, Actis ML, Rodrigues P, Fujii N, Peters JM, Stark H, Schulman BA (2015) RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Proc Natl Acad Sci U S A 112:5272–5279CrossRefGoogle Scholar
  54. 54.
    Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA (2016) Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165:1440–1453CrossRefGoogle Scholar
  55. 55.
    Qiao R, Weissmann F, Yamaguchi M, Brown NG, VanderLinden R, Imre R, Jarvis MA, Brunner MR, Davidson IF, Litos G, Haselbach D, Mechtler K, Stark H, Schulman BA, Peters JM (2016) Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A 113:E2570–E2578CrossRefGoogle Scholar
  56. 56.
    Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433CrossRefGoogle Scholar
  57. 57.
    Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133CrossRefGoogle Scholar
  58. 58.
    Armstrong AA, Mohideen F, Lima CD (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483:59–63CrossRefGoogle Scholar
  59. 59.
    Streich FC Jr, Lima CD (2016) Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 536:304–308CrossRefGoogle Scholar
  60. 60.
    Capili AD, Lima CD (2007) Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 369:608–618CrossRefGoogle Scholar
  61. 61.
    Duda DM, van Waardenburg RC, Borg LA, McGarity S, Nourse A, Waddell MB, Bjornsti MA, Schulman BA (2007) Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. J Mol Biol 369:619–630CrossRefGoogle Scholar
  62. 62.
    Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK (2007) Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 26:2797–2807CrossRefGoogle Scholar
  63. 63.
    Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5:865–876CrossRefGoogle Scholar
  64. 64.
    Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108:345–356CrossRefGoogle Scholar
  65. 65.
    Lois LM, Lima CD (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 24:439–451CrossRefGoogle Scholar
  66. 66.
    Yunus AA, Lima CD (2009) Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Methods Mol Biol 497:167–186CrossRefGoogle Scholar
  67. 67.
    Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31:371–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Frederick C. StreichJr.
    • 1
  • Christopher D. Lima
    • 1
    • 2
    Email author
  1. 1.Structural Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Howard Hughes Medical InstituteNew YorkUSA

Personalised recommendations