Advertisement

E. coli-Based Selection and Expression Systems for Discovery, Characterization, and Purification of Ubiquitylated Proteins

  • Olga Levin-Kravets
  • Tal Keren-Kaplan
  • Ilan Attali
  • Itai Sharon
  • Neta Tanner
  • Dar Shapira
  • Ritu Rathi
  • Avinash Persaud
  • Noa Shohat
  • Anna Shusterman
  • Gali PragEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1844)

Abstract

Ubiquitylation is an eukaryotic signal that regulates most cellular pathways. However, four major hurdles pose challenges to study ubiquitylation: (1) high redundancy between ubiquitin (Ub) cascades, (2) ubiquitylation is tightly regulated in the cell, (3) the transient nature of the Ub signal, and (4) difficulties to purify functional ubiquitylation apparatus for in vitro assay. Here, we present systems that express functional Ub cascades in E. coli, which lacks deubiquitylases, Ub-dependent degradations, and control mechanisms for ubiquitylation. Therefore, expression of an ubiquitylation cascade results in the accumulation of stable ubiquitylated protein that can be genetically selected or purified, thus circumventing the above challenges. Co-expression of split antibiotic resistance protein fragments tethered to Ub and ubiquitylation targets along with ubiquitylation enzymes (E1, E2, and E3) gives rise to bacterial growth on selective media. We show that ubiquitylation rate is highly correlated with growth efficiency. Hence, genetic libraries and simple manipulations in the selection system facilitate the identification and characterization of components and interfaces along Ub cascades. The bacterial expression system also facilitates the detection of ubiquitylated proteins. Furthermore, the expression system allows affinity chromatography-based purification of milligram quantities of ubiquitylated proteins for downstream biochemical, biophysical, and structural studies.

Key words

Bacterial genetics Selection Identification Expression and purification of ubiquitylated proteins 

Notes

Acknowledgments

We are very thankful to A Weissman, A Chitnis, R Vierstra, I Dikic, D Katzmann and S Misra, R Klevit, and Scott Emr for the fruitful discussions and for providing reagents.

We also thank S Ben-Aroya and D Rotin for validation experiments in cells and D Wolf and O Kleifeld for mass spectrometry analyses. This research was supported by grants from the Israeli Science Foundation (grant no. 1695/08, 464/11, and 651/16), from the EC FP7 Marie Curie International Reintegration Grant (PIRG03-GA-2008-231079), and from the Israeli Ministry of Health (5108) to GP.

References

  1. 1.
    Schulman BA, Wade Harper J (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10:319–331.  https://doi.org/10.1038/nrm2673CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537.  https://doi.org/10.1242/jcs.091777CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. Biochem J 399:361–372.  https://doi.org/10.1042/BJ20061138CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229.  https://doi.org/10.1146/annurev-biochem-060310-170328CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192.  https://doi.org/10.1146/annurev-biochem-061516-044916CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hurley JH, Schulman BA (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300–311.  https://doi.org/10.1016/j.cell.2014.01.070CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91.  https://doi.org/10.1016/j.devcel.2011.05.015CrossRefPubMedGoogle Scholar
  8. 8.
    Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169:792–806.  https://doi.org/10.1016/j.cell.2017.04.023CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Levin-Kravets O, Tanner N, Shohat N et al (2016) A bacterial genetic selection system for ubiquitylation cascade discovery. Nat Methods 13:945–952.  https://doi.org/10.1038/nmeth.4003CrossRefPubMedGoogle Scholar
  10. 10.
    Keren-Kaplan T, Attali I, Motamedchaboki K et al (2012) Synthetic biology approach to reconstituting the ubiquitylation cascade in bacteria. EMBO J 31:378–390.  https://doi.org/10.1038/emboj.2011.397CrossRefPubMedGoogle Scholar
  11. 11.
    Keren-Kaplan T, Prag G (2012) Purification and crystallization of mono-ubiquitylated ubiquitin receptor Rpn10. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1120–1123.  https://doi.org/10.1107/S1744309112034331CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Keren-Kaplan T, Peters LZ, Levin-Kravets O et al (2016) Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nat Commun.  https://doi.org/10.1038/ncomms12960
  13. 13.
    Davis BD (1948) Isolation of biochemically deficient mutants of bacteria by penicillin. J Am Chem Soc 70:4267.  https://doi.org/10.1021/ja01192a520CrossRefPubMedGoogle Scholar
  14. 14.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harb. Lab. Press, Cold Spring Harbor, NYGoogle Scholar
  15. 15.
    Levin-Reisman I, Gefen O, Fridman O et al (2010) Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat Methods 7:737–741.  https://doi.org/10.1038/nmeth.1485CrossRefPubMedGoogle Scholar
  16. 16.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019CrossRefPubMedGoogle Scholar
  17. 17.
    Balaji J (2014) Time Series Analyzer. https://imagej.nih.gov/ij/plugins/time-series.html
  18. 18.
    Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28.  https://doi.org/10.1016/0378-1119(90)90336-PCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Olga Levin-Kravets
    • 1
  • Tal Keren-Kaplan
    • 1
  • Ilan Attali
    • 1
  • Itai Sharon
    • 1
  • Neta Tanner
    • 1
  • Dar Shapira
    • 1
  • Ritu Rathi
    • 1
  • Avinash Persaud
    • 1
  • Noa Shohat
    • 1
  • Anna Shusterman
    • 1
  • Gali Prag
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations