Skip to main content

High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy

  • Protocol
  • First Online:
The CRAC Channel

Abstract

The expression of chimeras that consist of a fluorescent protein (FP) conjugated with a protein of interest provides the ability to visualize, track, and quantify the subcellular localization and dynamics of specific proteins in biological samples. Array confocal laser scanning microscopy is an eminently suitable technique for live-cell imaging of FP-tagged fusion proteins. Here, we describe real-time monitoring of the subcellular dynamics of the stromal-interacting molecule 1 (STIM1) and Orai1, the key protagonists of store-operated Ca2+ entry (SOCE) under resting conditions, and upon Ca2+ mobilization from the endoplasmic reticulum (ER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olenych SG, Claxton NS, Ottenberg GK et al (2007) The fluorescent protein color palette. Curr Protoc Cell Biol. Chapter 21: Unit 21.5

    Google Scholar 

  2. Depry C, Mehta S, Zhang J (2013) Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors. Pflugers Arch 465:373–381

    Article  CAS  PubMed  Google Scholar 

  3. Miyawaki A (2008) Green fluorescent protein glows gold. Cell 135:987–390

    Article  CAS  PubMed  Google Scholar 

  4. Graier WF, Frieden M, Malli R (2007) Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Arch 455:375–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu X, Weaver D, Shirihai O et al (2009) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28:3074–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eisner V, Csordás G, Hajnóczky G (2013) Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle—pivotal roles in Ca2+ and reactive oxygen species signaling. J Cell Sci 126:2965–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karbowski M, Cleland MM, Roelofs BA (2014) Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells. Methods Enzymol 547:57–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol. Chapter 21: Unit 21.4

    Google Scholar 

  9. Wu B, Piatkevich KD, Lionnet T et al (2011) Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 23:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malli R, Naghdi S, Romanin C et al (2008) Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci 121:3133–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. VanEngelenburg SB, Palmer AE (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol 12:60–65

    Article  CAS  PubMed  Google Scholar 

  12. Gauthier-Kemper A, Weissmann C, Reyher HJ et al (2012) Monitoring cytoskeletal dynamics in living neurons using fluorescence photoactivation. Methods Enzymol 505:3–21

    Article  CAS  PubMed  Google Scholar 

  13. Deak AT, Groschner LN, Alam MR et al (2013) The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction. J Cell Sci 126:879–888

    Article  CAS  PubMed  Google Scholar 

  14. Zhang SL, Yeromin AV, Zhang XHF et al (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Putney JW (2011) Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed) 3:980–384

    Article  Google Scholar 

  17. Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  18. Soboloff J, Rothberg BS, Madesh M et al (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brandman O, Liou J, Park WS et al (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muik M, Frischauf I, Derler I et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    Article  CAS  PubMed  Google Scholar 

  23. Várnai P, Tóth B, Tóth DJ et al (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J Biol Chem 282:29678–29690

    Article  CAS  PubMed  Google Scholar 

  24. Prakriya M, Feske S, Gwack Y et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  25. Barr VA, Bernot KM, Srikanth S et al (2008) Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol Biol Cell 19:2802–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang GN, Zeng W, Kim JY et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  CAS  PubMed  Google Scholar 

  27. Walther W, Stein U, Voss C et al (2003) Stability analysis for long-term storage of naked DNA: impact on nonviral in vivo gene transfer. Anal Biochem 318:230–235

    Article  CAS  PubMed  Google Scholar 

  28. Walther W, Schmeer M, Kobelt D et al (2013) A seven-year storage report of good manufacturing practice-grade naked plasmid DNA: stability, topology, and in vitro/in vivo functional analysis. Human gene therapy. Clin Dev 24:147–153

    CAS  Google Scholar 

  29. Luik RM, Wang B, Prakriya M et al (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Sandra Blass and Anna Schreilechner for their excellent technical assistance and Dr. C.J.S. Edgell (University of North Carolina, Chapel Hill, NC, USA) for the EA.hy926 cells. This work was supported by the Austrian Science Funds (FWF) with the project number P 28529-B27 and also sponsoring the DKplus Metabolic and Cardiovascular Disease (W1226-B18) of the Medical University of Graz. A.T.D., B.G., and E.E. was/are a fellow/fellows of the Doctoral College “Metabolic and Cardiovascular Disease” at the Medical University of Graz and was/are funded by the FWF (A.T.D.), Nikon Austria (B.G.), or BioTechMed (E.E.) (both within the Nikon-Center of Excellence, Graz) within the Doctoral College “Metabolic and Cardiovascular Disease” (FWF W 1226-B18, DKplus Metabolic and Cardiovascular Disease).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Malli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deak, A.T. et al. (2018). High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy. In: Penna, A., Constantin, B. (eds) The CRAC Channel. Methods in Molecular Biology, vol 1843. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8704-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8704-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8702-3

  • Online ISBN: 978-1-4939-8704-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics