Advertisement

Sequential Isolation of DNA, RNA, Protein, and Metabolite Fractions from Murine Organs and Intestinal Contents for Integrated Omics of Host–Microbiota Interactions

  • Pranjul Shah
  • Emilie E. L. Muller
  • Laura A. Lebrun
  • Linda Wampach
  • Paul Wilmes
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)

Abstract

The gastrointestinal microbiome plays a central role in health and disease. Imbalances in the microbiome, also referred to as dysbiosis, have recently been associated with a number of human idiopathic diseases ranging from metabolic to neurodegenerative. However, to causally link specific microorganisms or dysbiotic communities with tissue-specific and/or systemic disease-associated phenotypes, systematic in vivo studies are fundamental. Gnotobiotic mouse models have proven to be particularly useful for the elucidation of microbiota-associated characteristics as they provide a means to conduct targeted perturbations followed by analyses of induced localized and systemic effects. Here, we describe a methodology in the framework of systems biology which allows the comprehensive isolation of high quality biomolecular fractions (DNA, RNA, proteins and metabolites) from limited and/or heterogeneous sample material derived from murine brain, liver, and colon tissues, as well as from intestinal contents (fecal pellets and fecal masses). The obtained biomolecular fractions are compatible with current high-throughput genomic, transcriptomic, proteomic, and metabolomic analyses. The resulting data fulfills the premise of systematic measurements and allows the detailed study of tissue-specific and/or systemic effects of host–microbiota interactions in relation to health and disease.

Key words

Biomolecular isolation Host–microbe interactions Integrated omics Limited sample material Microbiota Mouse model Sample heterogeneity 

Notes

Acknowledgments

This work was supported by an ATTRACT fellowship (ATTRACT/A09/03), CORE grant (CORE11/BM/1186762) and a European Union Joint Programming in Neurodegenerative Diseases grant (INTER/JPND/12/01) to P.W., and Aide à la Formation Recherche (AFR) grants to L.W. (PHD-2013-1/BM) and E.E.L.M. (PRD-2011-1/SR), all funded by the Luxembourg National Research Fund (FNR). We are grateful to Anna Heintz-Buschart for SDS analysis and her valuable comments on the manuscript; Christian Jaeger and Karsten Hiller for GC-MS analysis; the LCSB mouse facility, especially, Djalil Coowar and Ludivine Treuillot for the provision of fecal pellets, and Manuel Buttini for the provision of mouse tissue samples.

References

  1. 1.
    Flint HJ, Scott KP, Louis P et al (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589CrossRefGoogle Scholar
  2. 2.
    Piñero-Piloña A, Raskin P (2001) Idiopathic Type 1 diabetes. J Diabetes Complicat 15:328–335CrossRefGoogle Scholar
  3. 3.
    Zhu Q, Gao R, Wu W et al (2013) The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 34:1285–1300CrossRefGoogle Scholar
  4. 4.
    Irrazábal T, Belcheva A, Girardin SE et al (2014) The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell 54:309–320CrossRefGoogle Scholar
  5. 5.
    Villanueva-Millán MJ, Pérez-Matute P, Oteo JA (2015) Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem:1–17Google Scholar
  6. 6.
    Bellaguarda E, Chang EB (2015) IBD and the gut microbiota—from bench to personalized medicine. Curr Gastroenterol Rep 17:439CrossRefGoogle Scholar
  7. 7.
    Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463CrossRefGoogle Scholar
  8. 8.
    Scheperjans F, Aho V, Pereira PAB et al (2014) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358CrossRefGoogle Scholar
  9. 9.
    Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187–192CrossRefGoogle Scholar
  10. 10.
    Minemura M, Shimizu Y (2015) Gut microbiota and liver diseases. World J Gastroenterol 21:1691–1702CrossRefGoogle Scholar
  11. 11.
    Malaguarnera G, Giordano M, Nunnari G et al (2014) Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J Gastroenterol 20:16639–16648CrossRefGoogle Scholar
  12. 12.
    Sobhani I, Tap J, Roudot-Thoraval F et al (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6:e16393CrossRefGoogle Scholar
  13. 13.
    Fritz JV, Desai MS, Shah P et al (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiome 1:14CrossRefGoogle Scholar
  14. 14.
    Claus SP, Tsang TM, Wang Y et al (2008) Systemic multicompartmental effects of the gut microbiome o mouse metabolic phenotypes. Mol Syst Biol 4:219–232CrossRefGoogle Scholar
  15. 15.
    Del Chierico F, Gnani D, Vernocchi P et al (2014) Meta-omic platforms to assist in the understanding of NAFLD gut microbiota alterations: tools and applications. Int J Mol Sci 15:684–711CrossRefGoogle Scholar
  16. 16.
    Szabo G (2015) Gut-liver axis in alcoholic liver disease. Gastroenterology 148:30–36CrossRefGoogle Scholar
  17. 17.
    Duca F, Gérard P, Covasa M et al (2014) How gut and brain control metabolism. Front Horm Res 42:73–82CrossRefGoogle Scholar
  18. 18.
    Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938CrossRefGoogle Scholar
  19. 19.
    Joyce AR, Palsson BO (2006) The model organism as a system: integrating “omics” data sets. Nat Rev Mol Cell Biol 7:198–210CrossRefGoogle Scholar
  20. 20.
    Thiele I, Heinken A, Fleming RMT (2013) A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol 24:4–12CrossRefGoogle Scholar
  21. 21.
    Harcombe WR, Riehl WJ, Dukovski I et al (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7:1104–1115CrossRefGoogle Scholar
  22. 22.
    Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550CrossRefGoogle Scholar
  23. 23.
    Heinken A, Sahoo S, Fleming RMT et al (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4:28–40CrossRefGoogle Scholar
  24. 24.
    Muller EE, Glaab E, May P et al (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333CrossRefGoogle Scholar
  25. 25.
    Roume H, Muller EE, Cordes T et al (2012) A biomolecular isolation framework for eco-systems biology. ISME J 7:110–121CrossRefGoogle Scholar
  26. 26.
    Roume H, Heintz-Buschart A, Muller EE et al (2013) Sequential isolation of metabolites, RNA, DNA, and proteins from the same unique sample. Methods Enzymol 531:219–236CrossRefGoogle Scholar
  27. 27.
    Jaeger C, Glaab E, Michelucci A et al (2015) The mouse brain metabolome: region-specific signatures and response to excitotoxic neuronal injury. Am J Pathol 185:1699–1712CrossRefGoogle Scholar
  28. 28.
    Hiller K, Hangebrauk J, Jäger C et al (2009) MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem 81:3429–3439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pranjul Shah
    • 1
  • Emilie E. L. Muller
    • 1
  • Laura A. Lebrun
    • 1
  • Linda Wampach
    • 1
  • Paul Wilmes
    • 1
  1. 1.Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations