Skip to main content

High-Resolution Imaging Methods to Analyze LINC Complex Function During Drosophila Muscle Development

  • Protocol
  • First Online:
Book cover The LINC Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1840))

Abstract

Using Drosophila muscle development as a model system makes possible the identification of genetic pathways, temporal regulation of development, mechanisms of cellular development, and physiological impacts in a single system. Here we describe the basic techniques for the evaluation of the cellular development of muscle in Drosophila in both embryos and in larvae. These techniques are discussed within the context of how the LINC complex contributes to muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang W, Worman HJ, Gundersen GG (2015) Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 208:11–22. https://doi.org/10.1083/jcb.201409047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Meinke P, Nguyen TD, Wehnert MS (2011) The LINC complex and human disease. Biochem Soc Trans 39:1693–1697. https://doi.org/10.1042/BST20110658

    Article  PubMed  CAS  Google Scholar 

  3. Meinke P, Schirmer EC (2015) LINC’ing form and function at the nuclear envelope. FEBS Lett 589:2514–2521. https://doi.org/10.1016/j.febslet.2015.06.011

    Article  PubMed  CAS  Google Scholar 

  4. Luxton GWG, Gomes ER, Folker ES et al (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–959. https://doi.org/10.1126/science.1189072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. King MC, Drivas TG, Blobel G (2008) A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Lei K, Yuan X et al (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187. https://doi.org/10.1016/j.neuron.2009.08.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Elhanany-Tamir H, Yu YV, Shnayder M et al (2012) Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol 198:833–846. https://doi.org/10.1083/jcb.201204102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang Q, Bethmann C, Worth NF et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833. https://doi.org/10.1093/hmg/ddm238

    Article  PubMed  CAS  Google Scholar 

  9. Nagano A, Koga R, Ogawa M et al (1996) Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 12:254–259. https://doi.org/10.1038/ng0396-254

    Article  PubMed  CAS  Google Scholar 

  10. Bonne G, Di Barletta MR, Varnous S et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288. https://doi.org/10.1038/6799

    Article  PubMed  CAS  Google Scholar 

  11. Puckelwartz MJ, Kessler E, Zhang Y et al (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620. https://doi.org/10.1093/hmg/ddn386

    Article  PubMed  CAS  Google Scholar 

  12. Bione S, Maestrini E, Rivella S et al (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327. https://doi.org/10.1038/ng1294-323

    Article  PubMed  CAS  Google Scholar 

  13. Wilson MH, Holzbaur ELF (2012) Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 125:4158–4169. https://doi.org/10.1242/jcs.108688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cadot B, Gache V, Vasyutina E et al (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. Nat Publ Group 13:741–749. https://doi.org/10.1038/embor.2012.89

    Article  CAS  Google Scholar 

  15. Iyer SR, Shah SB, Valencia AP et al (2016) Altered nuclear dynamics in MDX myofibers. J Appl Physiol 122:470–481. https://doi.org/10.1152/japplphysiol.00857.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Oddoux S, Zaal KJ, Tate V et al (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203:205–213. https://doi.org/10.1083/jcb.201304063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Metzger T, Gache V, Xu M et al (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124. https://doi.org/10.1038/nature10914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Folker ES, Schulman VK, Baylies MK (2012) Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. Development 139:3827–3837. https://doi.org/10.1242/dev.079178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Folker ES, Schulman VK, Baylies MK (2014) Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein. Development 141:355–366. https://doi.org/10.1242/dev.095612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Auld AL, Folker ES (2016) Nucleus-dependent sarcomere assembly is mediated by the LINC complex. Mol Biol Cell 27:2351–2359. https://doi.org/10.1091/mbc.E16-01-0021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Collins MA, Mandigo TR, Camuglia JM et al (2017) Emery-Dreifuss muscular dystrophy-linked genes and centronuclear myopathy-linked genes regulate myonuclear movement by distinct mechanisms. Mol Biol Cell. https://doi.org/10.1091/mbc.E16-10-0721

  22. Richardson BE, Becket K, Nowak SJ, Baylies MK (2007) SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Deveolpment 134: 4357-67. https://doi.org/10.1242/dev.010678

  23. Barton LJ, Pinto BS, Wallrath LL, and Geyer PK (2016) The Drosophila nuclear lamina protein otefin is required fro germline stem cell survival. Dev Cell 25: 645-54. https://doi.org/10.1016/j.devcel.2013.05.023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Folker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Auld, A.L., Collins, M.A., Mandigo, T.R., Folker, E.S. (2018). High-Resolution Imaging Methods to Analyze LINC Complex Function During Drosophila Muscle Development. In: Gundersen, G., Worman, H. (eds) The LINC Complex. Methods in Molecular Biology, vol 1840. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8691-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8691-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8690-3

  • Online ISBN: 978-1-4939-8691-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics