Utilization of Vibrio cholerae as a Model Organism to Screen Natural Product Libraries for Identification of New Antibiotics

  • Aleksandra E. SikoraEmail author
  • Richard Tehan
  • Kerry McPhail
Part of the Methods in Molecular Biology book series (MIMB, volume 1839)


The development of antibiotic-resistant bacteria requires increasing research efforts in drug discovery. Vibrio cholerae can be utilized as a model gram-negative enteric pathogen in high- and medium-throughput screening campaigns to identify antimicrobials with different modes of action. In this chapter, we describe methods for the optimal growth of V. cholerae in 384-well plates, preparation of suitable microtiter natural product sample libraries, as well as their screening using measurements of bacterial density and activity of type II secretion-dependent protease as readouts. Concomitant LC-MS/MS profiling and spectral data networking of assay sample libraries facilitate dereplication of putative known and/or nuisance compounds and efficient prioritization of samples containing putative new natural products for further investigation.

Key words

Type II secretion system Serine proteases Cell-based assay Natural products High-throughput screening LC-MS 



This work was funded by the start-up funds to A.E.S. and an Oregon Sea Grant under award number NA10OAR4170059 (project number R/BT-48) from the National Oceanic and Atmospheric Administration’s National Sea Grant College Program to K.L.M. and A.E.S.


  1. 1.
    Sandkvist M (2001) Type II secretion and pathogenesis. Infect Immun 69(6):3523–3535CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40(2):271–283CrossRefPubMedGoogle Scholar
  3. 3.
    Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13(12):581–588. CrossRefPubMedGoogle Scholar
  4. 4.
    Cianciotto NP (2009) Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future Microbiol 4:797–805. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sikora AE (2013) Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches. PLoS Pathog 9(2):e1003126. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Johnson TL, Waack U, Smith S, Mobley H, Sandkvist M (2015) Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. J Bacteriol 198(4):711–719. CrossRefPubMedGoogle Scholar
  7. 7.
    Sikora AE, Lybarger SR, Sandkvist M (2007) Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 189(23):8484–8495. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sikora AE, Beyhan S, Bagdasarian M, Yildiz FH, Sandkvist M (2009) Cell envelope perturbation induces oxidative stress and changes in iron homeostasis in Vibrio cholerae. J Bacteriol 191(17):5398–5408. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M (2011) Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem 286(19):16555–16566. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tran N, Zielke RA, Vining OB, Azevedo MD, Armstrong DJ, Banowetz GM, McPhail KL, Sikora AE (2013) Development of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria. J Biomol Screen 18(8):921–929. CrossRefPubMedGoogle Scholar
  11. 11.
    Waack U, Johnson TL, Chedid K, Xi C, Simmons LA, Mobley HLT, Sandkvist M (2017) Targeting the Type II secretion system: development, optimization, and validation of a high-throughput screen for the identification of small molecule inhibitors. Front Cell Infect Microbiol 7:380. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661. CrossRefPubMedGoogle Scholar
  13. 13.
    Kurita KL, Linington RG (2015) Connecting phenotype and chemotype: high-content discovery strategies for natural products research. J Nat Prod 78(3):587–596. CrossRefPubMedGoogle Scholar
  14. 14.
    Espen H, Jeanette HA (2016) Screening for marine natural products with potential as chemotherapeutics for acute myeloid leukemia. Curr Pharm Biotechnol 17(1):71–77. CrossRefGoogle Scholar
  15. 15.
    Henrich CJ, Beutler JA (2013) Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 30(10):1284–1298. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wagenaar M (2008) Pre-fractionated microbial samples—the second generation natural products library at Wyeth. Molecules 13(6):1406CrossRefPubMedGoogle Scholar
  17. 17.
    Tu Y, Jeffries C, Ruan H, Nelson C, Smithson D, Shelat AA, Brown KM, Li X-C, Hester JP, Smillie T, Khan IA, Walker L, Guy K, Yan B (2010) Automated high-throughput system to fractionate plant natural products for drug discovery. J Nat Prod 73(4):751–754. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Henrich CJ, Cartner LK, Wilson JA, Fuller RW, Rizzo AE, Reilly KM, McMahon JB, Gustafson KR (2015) Deguelins, natural product modulators of NF1-defective astrocytoma cell growth identified by high-throughput screening of partially purified natural product extracts. J Nat Prod 78(11):2776–2781. CrossRefPubMedGoogle Scholar
  19. 19.
    Bouslimani A, Sanchez LM, Garg N, Dorrestein PC (2014) Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 31(6):718–729. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kawabata S, Miura T, Morita T, Kato H, Fujikawa K, Iwanaga S, Takada K, Kimura T, Sakakibara S (1988) Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin. Eur J Biochem 172(1):17–25CrossRefPubMedGoogle Scholar
  21. 21.
    Lybarger SR, Johnson TL, Gray MD, Sikora AE, Sandkvist M (2009) Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191(9):3149–3161. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gadwal S, Korotkov KV, Delarosa JR, Hol WG, Sandkvist M (2014) Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB. J Biol Chem 289(12):8288–8298. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schopfer U, Engeloch C, Stanek J, Girod M, Schuffenhauer A, Jacoby E, Acklin P (2005) The Novartis compound archive—from concept to reality. Comb Chem High Throughput Screen 8(6):513–519. CrossRefPubMedGoogle Scholar
  24. 24.
    Sikorska J, Hau AM, Anklin C, Parker-Nance S, Davies-Coleman MT, Ishmael JE, McPhail KL (2012) Mandelalides A–D, cytotoxic macrolides from a new Lissoclinum species of South African tunicate. J Org Chem 77(14):6066–6075. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinforma 7(1):96–108. CrossRefGoogle Scholar
  26. 26.
    Yi L, Dong N, Yun Y, Deng B, Ren D, Liu S, Liang Y (2016) Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Anal Chim Acta 914:17–34. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crusemann M, Boudreau PD, Esquenazi E, Sandoval-Calderon M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O'Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodriguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard P-M, Phapale P, Nothias L-F, Alexandrov T, Litaudon M, Wolfender J-L, Kyle JE, Metz TO, Peryea T, Nguyen D-T, VanLeer D, Shinn P, Jadhav A, Muller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutierrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotech 34(8):828–837.—supplementary-informationCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aleksandra E. Sikora
    • 1
    Email author
  • Richard Tehan
    • 1
  • Kerry McPhail
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyOregon State UniversityCorvallisUSA

Personalised recommendations