Skip to main content

Flow Cytometry and Direct Sequencing of Viruses

Part of the Methods in Molecular Biology book series (MIMB,volume 1838)

Abstract

In order to describe a novel uncultured viral species, it is essential to obtain the DNA sequence of their full genomes. The ability to distinguish the viral genome from the genome of its bacterial host is the major challenge of the modern viromics. The major obstacles for mining of viral genomes in metagenomic assemblies is bacterial contamination in viromes and low DNA input for sequencing.

These obstacles can be overcome by flow cytometry that allows collecting free viral particles from environmental samples. In addition, fluorescence activated cell sorting reduces the bacterial contamination. By using optimized sequencing protocols, the ultra-low input DNA samples can be sequenced directly, without the need for whole genome amplification. This chapter provides details for staining of environmental viruses, flow cytometry, and direct sequencing of ultra-low input DNA samples on Illumina platform.

Key words

  • Flow cytometry
  • Ultra-low input DNA samples
  • Viruses
  • Whole genome amplification
  • DNA sequencing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8682-8_1
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8682-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dutilh BE, Cassman N, McNair K et al (2014) A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5:4498

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roux S, Enault F, Hurwitz BL et al (2015) VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manrique P, Bolduc B, Walk ST et al (2016) Healthy human gut phageome. PNAS 113:10400–10405

    CrossRef  CAS  PubMed  Google Scholar 

  4. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA et al (2016) Uncovering Earth’s virome. Nature 536:425–430

    CrossRef  CAS  PubMed  Google Scholar 

  5. Simmonds P, Adams MJ, Benkő M et al (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168

    CrossRef  CAS  PubMed  Google Scholar 

  6. Roux S, Hallam SJ, Woyke T et al (2015) Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. elife 4:e08490

    CrossRef  PubMed Central  Google Scholar 

  7. Deng L, Ignacio-Espinoza JC, Gregory AC et al (2014) Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513:242–245

    CrossRef  CAS  PubMed  Google Scholar 

  8. Bettarel Y, Sime-Ngando T, Amblard C et al (2000) A comparison of methods for counting viruses in aquatic systems. Appl Environ Microbiol 66:2283–2289

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luef B, Frischkorn KR, Wrighton KC et al (2015) Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun 6:6372

    CrossRef  CAS  PubMed  Google Scholar 

  10. Legendre M, Lartigue A, Bertaux L et al (2015) In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. PNAS 112:E5327–E5335

    CrossRef  CAS  PubMed  Google Scholar 

  11. Allen LZ, Ishoey T, Novotny MA et al (2011) Single virus genomics: a new tool for virus discovery. PLoS One 6:e17722

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez-Hernandez F, Fornas O, Lluesma Gomez M et al (2017) Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 8:15892

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stepanauskas R, Fergusson EA et al (2017) Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 8:84

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinard R, de Winter A, Sarkis G et al (2006) Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics 7:216

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng Z, Advani A, Melefors O et al (2011) Titration-free 454 sequencing using Y adapters. Nat Protoc 6:1367–1376

    CrossRef  CAS  PubMed  Google Scholar 

  16. Džunková M, Garcia-Garcerà M, Martínez-Priego L et al (2014) Direct sequencing from the minimal number of DNA molecules needed to fill a 454 picotiterplate. PLoS One 9:e97379

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Rinke C, Low S, Woodcroft BJ et al (2016) Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ 4:e2486

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Džunková M, D’Auria G, Moya A (2015) Direct sequencing of human gut virome fractions obtained by flow cytometry. Front Microbiol 6:955

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Thurber RV, Haynes M, Breitbart M et al (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4:470–483

    CrossRef  CAS  PubMed  Google Scholar 

  20. Illumina (2017) Nextera XT DNA library prep kit reference guide. Document #15031942v02

    Google Scholar 

  21. KAPAbiosystems (2017) KAPA library quantification kits for Illumina sequencing platforms. Version 4.11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Džunková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Džunková, M. (2018). Flow Cytometry and Direct Sequencing of Viruses. In: Moya, A., Pérez Brocal, V. (eds) The Human Virome. Methods in Molecular Biology, vol 1838. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8682-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8682-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8681-1

  • Online ISBN: 978-1-4939-8682-8

  • eBook Packages: Springer Protocols