Skip to main content

Robust Analysis of Time Series in Virome Metagenomics

Part of the Methods in Molecular Biology book series (MIMB,volume 1838)

Abstract

Metagenomics is a powerful tool for assessing the functional and taxonomic contents in biological samples as it makes feasible to study, simultaneously, the whole living community related to a host organism or medium: all the microbes, including virus, bacteria, archaea, fungi, and protists. New DNA and RNA sequencing technologies are dramatically decreasing the cost per sequenced base, so metagenomic sequencing is becoming more and more widespread in biomedical and environmental research. This is opening the possibility of complete longitudinal metagenomic studies, which could unravel the dynamics of microbial communities including intra-microbiome and host-microbiome interactions through in-depth analysis of time series. For viruses, this is particularly interesting because it allows broad interaction studies of viruses and hosts in different time scales, as in bacteria–phages coevolution studies.

This chapter presents computational methods for an automatic and robust analysis of metagenomic time series in virome metagenomics (RATSVM). The same theoretical frame and computational protocol is also suitable for longitudinal studies of spatial series to uncover the dynamics of a microbial community with viruses along a selected dimension in the space. In order to conveniently illustrate the procedure, real data from a published virome study is used. The computational protocol presented here requires only basic computational knowledge. Several scripts have been prepared to ease and automate the most complicate steps, they are available in the RATSVM public repository. For some of the methods a mid-range computing server is advisable, and for some others, it is required. A fat-node with large memory and fast I/O would be the best choice for optimum results.

Key words

  • Robust-analysis
  • Time-series
  • Longitudinal metagenomics
  • RATSVM
  • Virome
  • Host-microbiome coevolution
  • Bacteria-phages coevolution

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8682-8_17
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8682-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miller RR, Montoya V, Gardy JL et al (2013) Metagenomics for pathogen detection in public health. Genome Med 5(9):81

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79(10):3148–3155

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martí JM, Martínez-Martínez D, Rubio T et al (2017) Health and disease imprinted in the time variability of the human microbiome. mSystems 2(2):e00144-16

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Wu H, Tremaroli V, Bäckhed F (2015) Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab 26(12):758–770

    CrossRef  CAS  PubMed  Google Scholar 

  5. Noecker C, Eng A, Srinivasan S et al (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 1(1):13

    CrossRef  Google Scholar 

  6. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci 109(2):594–599

    CrossRef  PubMed  Google Scholar 

  7. Bashan A, Gibson TE, Friedman J et al (2016) Universality of human microbial dynamics. Nature 534(7606):259

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith HF (1938) An empirical law describing heterogeneity in the yields of agricultural crops. J Agric Sci 28(1):1–23

    CrossRef  Google Scholar 

  9. Taylor LR (1961) Aggregation, variance and the mean. Nature 189(4766):732–735

    CrossRef  Google Scholar 

  10. Mantegna RN, Stanley HE (1995) Scaling behaviour in the dynamics of an economic index. Nature 376(6535):46

    CrossRef  CAS  Google Scholar 

  11. Eisler Z, Kertesz J, Yook S et al (2005) Multiscaling and non-universality in fluctuations of driven complex systems. Europhys Lett 69(4):664

    CrossRef  CAS  Google Scholar 

  12. De Menezes MA, Barabási A (2004) Fluctuations in network dynamics. Phys Rev Lett 92(2):028701

    CrossRef  CAS  PubMed  Google Scholar 

  13. Reed DH, Hobbs GR (2004) The relationship between population size and temporal variability in population size. In: Anonymous animal conservation forum, vol 7. Cambridge University Press, p 1

    Google Scholar 

  14. Anderson RM, Gordon DM, Crawley MJ et al (1982) Variability in the abundance of animal and plant species. Nature 296(5854):245–248

    CrossRef  Google Scholar 

  15. Cohen JE, Xu M, Schuster WS (2013) Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling. Proc R Soc Lond B Biol Sci 280(1757):20122955

    CrossRef  Google Scholar 

  16. Živković J, Tadić B, Wick N et al (2006) Statistical indicators of collective behavior and functional clusters in gene networks of yeast. Eur Phys J 50(1–2):255–258

    CrossRef  CAS  Google Scholar 

  17. Kendal WS (2003) An exponential dispersion model for the distribution of human single nucleotide polymorphisms. Mol Biol Evol 20(4):579–590

    CrossRef  CAS  PubMed  Google Scholar 

  18. Zhang Z, Geng J, Tang X et al (2014) Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J 8(4):881

    CrossRef  PubMed  Google Scholar 

  19. Kaltz O, Escobar-Páramo P, Hochberg ME et al (2012) Bacterial microcosms obey Taylor’s law: effects of abiotic and biotic stress and genetics on mean and variance of population density. Ecol Process 1(1):5

    CrossRef  Google Scholar 

  20. Ramsayer J, Fellous S, Cohen JE et al (2012) Taylor’s law holds in experimental bacterial populations but competition does not influence the slope. Biol Lett 8(2):316–319

    CrossRef  PubMed  Google Scholar 

  21. Pérez-Cobas AE, Artacho A, Ott SJ et al (2014) Structural and functional changes in the gut microbiota associated to Clostridium difficile infection. Front Microbiol 5:335

    PubMed  PubMed Central  Google Scholar 

  22. Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gajer P, Brotman RM, Bai G et al (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4(132):132ra52

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Nayfach S, Pollard KS (2016) Toward accurate and quantitative comparative metagenomics. Cell 166(5):1103–1116. https://doi.org/10.1016/j.cell.2016.08.007

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lusk RW (2014) Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data. PLoS One 9(10):e110808

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weiss S, Amir A, Hyde ER et al (2014) Tracking down the sources of experimental contamination in microbiome studies. Genome Biol 15(12):564. https://doi.org/10.1186/s13059-014-0564-2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Gruber K (2015) Here, there, and everywhere. EMBO reports:e201540822

    Google Scholar 

  28. Kircher M, Sawyer S, Meyer M (2012) Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40(1):e3

    CrossRef  CAS  PubMed  Google Scholar 

  29. Thoendel M, Jeraldo P, Greenwood-Quaintance KE et al (2017) Impact of contaminating DNA in whole-genome amplification kits used for metagenomic shotgun sequencing for infection diagnosis. J Clin Microbiol 55(6):1789–1801

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ames SK, Hysom DA, Gardner SN et al (2013) Scalable metagenomic taxonomy classification using a reference genome database. Bioinformatics 29(18):2253–2260

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ames SK, Gardner SN, Martí JM et al (2015) Using populations of human and microbial genomes for organism detection in metagenomes. Genome Res 25(7):1056–1067

    Google Scholar 

  32. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anonymous (2016) Database resources of the National Center for biotechnology information. Nucleic Acids Res 44(D1):D19

    Google Scholar 

  34. Burguet-Castell J, Martí JM (2018) Entrez: A simple Python interface to the NCBI databases (https://github.com/jordibc/entrez)

  35. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  36. Torvalds L, Hamano J (2010) Git: Fast version control system.

    Google Scholar 

  37. Minot S, Bryson A, Chehoud C et al (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 110(30):12450–12455

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Martí, J.M. (2018). Robust Analysis of Time Series in Virome Metagenomics. In: Moya, A., Pérez Brocal, V. (eds) The Human Virome. Methods in Molecular Biology, vol 1838. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8682-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8682-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8681-1

  • Online ISBN: 978-1-4939-8682-8

  • eBook Packages: Springer Protocols