Skip to main content

Dynamic Light Scattering of DNA-Ligand Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1837))

Abstract

Dynamic Light Scattering (DLS) enables the characterization of sizes and electrokinetic properties of colloids, polymers, macromolecules. DNA is a charged semiflexible polyelectrolyte, which is condensed or compacted by counterions, proteins, and other condensing agents in processes such as chromosome compaction and gene therapeutic applications. DNA condensation is closely related to charge screening, since packaging requires effective neutralization of its surface negative charges. In this chapter, we describe in detail the protocol for DLS of DNA-ligand complexes. As an example, we describe data for condensation of DNA by chitosan and the measurement of size, zeta potential, and electrophoretic mobility of the DNA-ligand complex by DLS.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bhattacharjee S (2016) DLS and zeta potential–what they are and what they are not? J Control Release 235:337–351

    Article  CAS  PubMed  Google Scholar 

  2. Goldburg W (1999) Dynamic light scattering. Am J Phys 67(12):1152–1160

    Article  Google Scholar 

  3. Shaw DJ, Costello B (1993) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Bloomfield VA (1997) DNA condensation by multivalent cations. Biopolymers 44(3):269–282

    Article  CAS  PubMed  Google Scholar 

  5. Teif VB, Bohinc K (2011) Condensed DNA: condensing the concepts. Prog Biophys Mol Biol 105(3):208–222

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen T, Rouzina I, Shklovskii B (2000) Reentrant condensation of DNA induced by multivalent counterions. J Chem Phys 112(5):2562–2568

    Article  CAS  Google Scholar 

  7. Vijayanathan V, Thomas T, Thomas T (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41(48):14085–14094

    Article  CAS  PubMed  Google Scholar 

  8. Thomas T, Tajmir-Riahi H, Thomas T (2016) Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 48(10):2423–2431

    Article  CAS  PubMed  Google Scholar 

  9. Tan X, Lu X, Jia F, Liu X, Sun Y, Logan JK, Zhang K (2016) Blurring the role of oligonucleotides: spherical nucleic acids as a drug delivery vehicle. J Am Chem Soc 138(34):10834–10837

    Article  CAS  PubMed  Google Scholar 

  10. Gelbart WM, Bruinsma RF, Pincus PA, Parsegian VA (2000) DNA-inspired electrostatics. Phys Today 53(9):38–44

    Article  CAS  Google Scholar 

  11. Strey HH, Podgornik R, Rau DC, Parsegian VA (1998) Dna-dna interactions. Curr Opin Struct Biol 8(3):309–313

    Article  CAS  PubMed  Google Scholar 

  12. Besteman K, Van Eijk K, Lemay S (2007) Charge inversion accompanies DNA condensation by multivalent ions. Nat Phys 3(9):641–644

    Article  CAS  Google Scholar 

  13. Grosberg AY, Nguyen T, Shklovskii B (2002) Colloquium: the physics of charge inversion in chemical and biological systems. Rev Mod Phys 74(2):329

    Article  CAS  Google Scholar 

  14. Nguyen TT, Shklovskii BI (2002) Model of inversion of DNA charge by a positive polymer: fractionalization of the polymer charge. Phys Rev Lett 89(1):018101

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson LG, Guldbrand L, Nordenskiöld L (1991) Evaluation of the electrostatic osmotic pressure in an infinite system of hexagonally oriented DNA molecules: a Monte Carlo simulation study. Mol Phys 72(1):177–192

    Article  CAS  Google Scholar 

  16. Guo Z, Wang Y, Yang A, Yang G (2016) The effect of pH on charge inversion and condensation of DNA. Soft Matter 12(31):6669–6674

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Wang R, Cao B, Guo Z, Yang G (2016) Single molecular demonstration of modulating charge inversion of DNA. Sci Rep 6:38628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salas E, Martinez P, Godinez R, Del Nunez AA, Miranda C (2008) Evaluation of humoral and cellular immune response in amurine model using vesicles outer membrane of Brucella ovis in chitosan nanoparticles. Asian Chitin J 4:59–66

    Google Scholar 

  19. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40(3):175–181

    Article  CAS  PubMed  Google Scholar 

  20. Kai E, Ochiya T (2004) A method for oral DNA delivery with N-acetylated chitosan. Pharm Res 21(5):838–843

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov V, Martemyanova J, Muller M, Paul W, Binder K (2008) Conformational changes of a single semiflexible macromolecule near an adsorbing surface: a Monte Carlo simulation. J Phys Chem B 113(12):3653–3668

    Article  CAS  Google Scholar 

  22. MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56(1):259–272

    Article  CAS  PubMed  Google Scholar 

  23. Fang N, Chan V, Mao H-Q, Leong KW (2001) Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2(4):1161–1168

    Article  CAS  PubMed  Google Scholar 

  24. Richardson SW, Kolbe HJ, Duncan R (1999) Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 178(2):231–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11574232, 11274245, 11304232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, G., Wang, Y. (2018). Dynamic Light Scattering of DNA-Ligand Complexes. In: Dame, R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8675-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8674-3

  • Online ISBN: 978-1-4939-8675-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics