Statistical Detection of Genome Differences Based on CNV Segments

  • Yang Zhou
  • Derek M. Bickhart
  • George E. Liu
Part of the Methods in Molecular Biology book series (MIMB, volume 1833)


Population analysis using copy number variation (CNV) is far more complex than analysis using SNPs because of the diverse copy number and inconsistent boundaries of CNVs in different individuals that causes changes in frequency. Multiple studies have reported CNV regions associated with diseases or body traits based on a CNV segmentation strategy that condenses calls from multiple different sources into a genotype state. Here, we provide a guideline of how to generate CNV segments from known CNV results, and how to detect genome differences based on CNV segments.

Key words

CNV segments PennCNV FST Lineage differences Misassemblies 


  1. 1.
    Handsaker RE et al (2015) Large multiallelic copy number variations in humans. Nat Genet 47(3):296–303CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu GE et al (2010) Analysis of copy number variations among diverse cattle breeds. Genome Res 20(5):693–703CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Klambauer G et al (2012) Cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40(9):e69. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li J et al (2012) CONTRA: copy number analysis for targeted resequencing. Bioinformatics 28(10):1307–1313CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim J-H et al (2012) CNVRuler: a copy number variation-based case–control association analysis tool. Bioinformatics 28(13):1790–1792CrossRefPubMedGoogle Scholar
  6. 6.
    Glessner JT, Li J, Hakonarson H (2013) ParseCNV integrative copy number variation association software with quality tracking. Nucleic Acids Res 41(5):e64. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xu L et al (2013) Comparative analysis of CNV calling algorithms: literature survey and a case study using bovine high-density SNP data. Microarrays 2(3):171–185CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhou Y et al (2016) Comparative analyses across cattle genders and breeds reveal the pitfalls caused by false positive and lineage-differential copy number variations. Sci Rep 6:29219CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou Y et al (2016) Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus. BMC Genomics 17(1):419CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park C et al (2017) A copy number variation in PKD1L2 is associated with colorectal cancer predisposition in korean population. Int J Cancer 140(1):86–94CrossRefPubMedGoogle Scholar
  11. 11.
    Winchester L, Yau C, Ragoussis J (2009) Comparing CNV detection methods for SNP arrays. Brief Funct Genomic Proteomic 8(5):353–366. CrossRefPubMedGoogle Scholar
  12. 12.
    Wang K et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17(11):1665–1674CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Elsik CG, Tellam RL, Worley KC (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926):522–528CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yang Zhou
    • 1
  • Derek M. Bickhart
    • 2
  • George E. Liu
    • 3
  1. 1.Huazhong Agricultural UniversityWuhanChina
  2. 2.Research Microbiologist/BioinformaticianUSDA ARS DFRCMadisonUSA
  3. 3.Animal Genomics and Improvement LaboratoryUSDA ARSBeltsvilleUSA

Personalised recommendations