Advertisement

Ultrasound and Microbubble-Mediated Blood-Brain Barrier Disruption for Targeted Delivery of Therapeutics to the Brain

  • Meaghan A. O’ReillyEmail author
  • Kullervo Hynynen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1831)

Abstract

Ultrasound and microbubble-mediated disruption of the Blood-Brain barrier is a noninvasive and targetable technique that permits the investigation of pharmacological interventions in the brain and CNS. This technique provides an alternative to direct injection of agents into the brain parenchyma or chemical disruption of the Blood-Brain barrier. Here, we detail one protocol for inducing transient Blood-Brain barrier disruption in a rodent model using a commercially available microbubble contrast agent (Definity).

Key words

Focused ultrasound Therapeutic ultrasound Blood-brain barrier Targeted drug delivery Microbubble 

References

  1. 1.
    Reese T, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34(1):207–217CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pardridge WM (1995) Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 15(1):5–36CrossRefGoogle Scholar
  3. 3.
    Salahuddin TS, Johansson BB, Kalimo H, Olsson Y (1988) Structural changes in the rat brain after carotid infusions of hyperosmolar solutions. An electron microscopic study. Acta Neuropathol 77(1):5–13CrossRefPubMedGoogle Scholar
  4. 4.
    Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, Hadani M, Ram Z (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase i/ii clinical study. J Neurosurg 100(3):472–479CrossRefPubMedGoogle Scholar
  5. 5.
    Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M et al (2010) Phase iii randomized trial of ced of il13-pe38qqr vs gliadel wafers for recurrent glioblastoma. Neuro-Oncology 12(8):871–881CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular trojan horses. Bioconjug Chem 19(7):1327–1338CrossRefPubMedGoogle Scholar
  7. 7.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of herceptin to the mouse brain by mri-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 103(31):11719–11723CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Targeted delivery of antibodies through the blood-brain barrier by mri-guided focused ultrasound. Biochem Biophys Res Commun 340(4):1085–1090CrossRefPubMedGoogle Scholar
  9. 9.
    Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in alzheimer’s disease mouse models. PLoS One 3(5):e2175CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the tgcrnd8 mouse model of alzheimer’s disease. PLoS One 5(5):e10549CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, Tseng IC, Wang JJ, Yen TC, Chen PY, Wei KC (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107(34):15205–15210CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Lyu LA, Tseng IC, Feng LY, Tsai HC, Chen SM, Lu YJ, Wang JJ, Yen TC, Ma YH, Wu T, Chen JP, Chuang JI, Shin JW, Hsueh C, Wei KC (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro-Oncology 12(10):1050–1060CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Etame AB, Diaz RJ, O’Reilly MA, Smith CA, Mainprize TG, Hynynen K, Rutka JT (2012) Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using mri-guided focused ultrasound. Nanomedicine 8(7):1133–1142CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thévenot E, Jordão JF, O’Reilly MA, Markham K, Weng YQ, Foust KD, Kaspar BK, Hynynen K, Aubert I (2012) Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 23(11):1144–1155CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Alonso A, Reinz E, Leuchs B, Kleinschmidt J, Fatar M, Geers B, Lentacker I, Hennerici MG, de Smedt SC, Meairs S (2013) Focal delivery of aav2/1-transgenes into the rat brain by localized ultrasound-induced bbb opening. Mol Ther Nucleic Acids 2:e73CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Burgess A, Ayala-Grosso CA, Ganguly M, Jordão JF, Aubert I, Hynynen K (2011) Targeted delivery of neural stem cells to the brain using mri-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One 6(11):e27877CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, Wels WS, Hynynen K (2013) Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res 73(6):1892–1899CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bakay L, Ballantine H, Hueter T, Sosa D (1956) Ultrasonically produced changes in the blood-brain barrier. AMA Arch Neurol Psychiatry 76(5):457–467CrossRefPubMedGoogle Scholar
  19. 19.
    Hynynen K, McDannold N, Vykhodtseva N, Jolesz F (2001) Noninvasive mr imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3):640–646CrossRefPubMedGoogle Scholar
  20. 20.
    Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33(1):95–104CrossRefPubMedGoogle Scholar
  21. 21.
    Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using mri-guided focused ultrasound. Int J Cancer 121(4):901–907CrossRefPubMedGoogle Scholar
  22. 22.
    Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34(7):1093–1104CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51(4):793–807CrossRefPubMedGoogle Scholar
  24. 24.
    Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR (2008) Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med Biol 34(12):2028–2034CrossRefPubMedGoogle Scholar
  25. 25.
    Liu HL, Chen PY, Yang HW, Wu JS, Tseng IC, Ma YJ, Huang CY, Tsai HC, Chen SM, Lu YJ, Huang CY, Hua MY, Ma YH, Yen TC, Wei KC (2011) In vivo mr quantification of superparamagnetic iron oxide nanoparticle leakage during low-frequency-ultrasound-induced blood-brain barrier opening in swine. J Magn Reson Imaging 34(6):1313–1324CrossRefPubMedGoogle Scholar
  26. 26.
    Tung YS, Marquet F, Teichert T, Ferrera V, Konofagou E (2011) Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. Appl Phys Lett 98(16):163704CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72(14):3652–3663CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol 34(6):930–937CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    O’Reilly MA, Waspe AC, Ganguly M, Hynynen K (2011) Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol 37(4):587–594CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Choi JJ, Selert K, Vlachos F, Wong A, Konofagou EE (2011) Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proc Natl Acad Sci U S A 108(40):16539–16544CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Choi JJ, Selert K, Gao Z, Samiotaki G, Baseri B, Konofagou EE (2011) Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies. J Cereb Blood Flow Metab 31(2):725–737CrossRefPubMedGoogle Scholar
  32. 32.
    O’Reilly MA, Hynynen K (2012) Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 263(1):96–106CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One 7(9):e45783CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34(5):834–840CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Howles G, Bing K, Qi Y, Rosenzweig S, Nightingale K, Johnson G (2010) Contrast-enhanced in vivo magnetic resonance microscopy of the mouse brain enabled by noninvasive opening of the blood-brain barrier with ultrasound. Magn Reson Med 64(4):995–1004CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Santin MD, Debeir T, Bridal SL, Rooney T, Dhenain M (2013) Fast in vivo imaging of amyloid plaques using μ-mri gd-staining combined with ultrasound-induced blood-brain barrier opening. NeuroImage 79:288–294CrossRefPubMedGoogle Scholar
  37. 37.
    O’Reilly MA, Muller A, Hynynen K (2011) Ultrasound insertion loss of rat parietal bone appears to be proportional to animal mass at submegahertz frequencies. Ultrasound Med Biol 37(11):1930–1937CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Talu E, Powell RL, Longo ML, Dayton PA (2008) Needle size and injection rate impact microbubble contrast agent population. Ultrasound Med Biol 34(7):1182–1185CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McDannold N, Zhang Y, Vykhodtseva N (2011) Blood-brain barrier disruption and vascular damage induced by ultrasound bursts combined with microbubbles can be influenced by choice of anesthesia protocol. Ultrasound Med Biol 37(8):1259–1270CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Choi J, Feshitan J, Baseri B, Wang S, Tung YS, Borden M, Konofagou E (2010) Microbubble-size dependence of focused ultrasound-induced bloodbrain barrier opening in mice in vivo. IEEE T Bio-Med Eng 57(1):145–154CrossRefGoogle Scholar
  41. 41.
    Marty B, Larrat B, Landeghem MV, Robic C, Robert P, Port M, Bihan DL, Pernot M, Tanter M, Lethimonnier F, Mériaux S (2012) Dynamic study of blood-brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow MetabCrossRefGoogle Scholar
  42. 42.
    Goertz DE, Wright C, Hynynen K (2010) Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound. Ultrasound Med Biol 36(6):916–924CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Helfield BL, Huo X, Williams R, Goertz DE (2012) The effect of preactivation vial temperature on the acoustic properties of definity™. Ultrasound Med Biol 38(7):1298–1305CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Sciences PlatformSunnybrook Research InstituteTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  3. 3.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations