Advertisement

Exploiting Phage Display for Development of Novel Cellular Targeting Strategies

  • William Marsh
  • Amanda Witten
  • Sarah E. StabenfeldtEmail author
Protocol
  • 939 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1831)

Abstract

Targeting strategies for drug delivery applications rely on targeting moieties (i.e., peptide, antibody) specific to the desired cell surface receptor or protein of interest. However, current targeting strategies are limited to previously identified epitopes/ligand pairs. The field of phage display opens up the targeting moiety options whereby new epitope/ligand pairs may be discovered through well-designed biopanning assays for the target cell population of interest. Here, we provide a detailed protocol to perform phage biopanning assays on adherent cell cultures. The methods described here may be modified to user-specific targeting interests.

Key words

Phage display Single chain antibody fragment (scFv) Domain antibody (dAb) Astrocytes 

References

  1. 1.
    Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626. https://doi.org/10.1016/j.addr.2008.08.005CrossRefPubMedGoogle Scholar
  2. 2.
    Paschke M (2005) Phage display systems and their applications. Appl Microbiol Biotechnol 70:2–11. https://doi.org/10.1007/s00253-005-0270-9CrossRefPubMedGoogle Scholar
  3. 3.
    Lee CMY, Iorno N, Sierro F, Christ D (2007) Selection of human antibody fragments by phage display. Nat Protoc 2:3001–3008. https://doi.org/10.1038/nprot.2007.448CrossRefPubMedGoogle Scholar
  4. 4.
    Bertrand N, Wu J, Xu X et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. https://doi.org/10.1016/j.addr.2013.11.009CrossRefPubMedGoogle Scholar
  5. 5.
    Stabenfeldt SE, Gossett JJ, Barker TH (2010) Building better fibrin knob mimics: an investigation of synthetic fibrin knob peptide structures in solution and their dynamic binding with fibrinogen/fibrin holes. Blood 116:1352–1359. https://doi.org/10.1182/blood-2009-11-251801CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brown AC, Stabenfeldt SE, Ahn B et al (2014) Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater 13:1108–1114. https://doi.org/10.1038/nmat4066CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dudgeon K, Famm K, Christ D (2008) Sequence determinants of protein aggregation in human VH domains. Protein Eng Des Sel 22:217–220. https://doi.org/10.1093/protein/gzn059CrossRefPubMedGoogle Scholar
  8. 8.
    Kvam E, Sierks MR, Shoemaker CB, Messer A (2010) Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Eng Des Sel 23:489–498. https://doi.org/10.1093/protein/gzq022CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sanders ER (2012) Aseptic laboratory techniques: plating methods. JoVE. https://doi.org/10.3791/3064
  10. 10.
    Cote RJ (1998) Aseptic technique for cell culture. Curr Protoc Cell Biol:1–10Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • William Marsh
    • 1
  • Amanda Witten
    • 1
  • Sarah E. Stabenfeldt
    • 1
    Email author
  1. 1.School of Biological and Health Systems Engineering, Ira A. Fulton Schools of EngineeringArizona State UniversityTempeUSA

Personalised recommendations