Construction of Bacteria-Based Cargo Carriers for Targeted Cancer Therapy

  • Mahama A. Traore
  • Ali Sahari
  • Bahareh BehkamEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1831)


Despite significant recent progress in nanomedicine, drug delivery to solid tumors remains a formidable challenge often associated with low delivery efficiency and limited penetration of the drug in poorly vascularized regions of solid tumors. Attenuated strains of facultative anaerobes have been demonstrated to have exceptionally high selectivity to primary tumors and metastatic cancer, a good safety profile, and superior intratumoral penetration performance. However, bacteria have rarely been able to completely inhibit tumor growth in immunocompetent hosts solely by their presence in the tumor. We have developed a Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) in which the functional capabilities of tumor-targeting bacteria are interfaced with chemotherapeutic-loaded nanoparticles, an approach that would amplify the therapeutic potential of both modalities. Here, we describe two biomanufacturing techniques to construct NanoBEADS by linking different bacterial species with polymeric theranostic vehicles. NanoBEADS are envisioned to significantly impact current practices in cancer theranostics through improved targeting and intratumoral transport properties.

Key words

Bacteria Bacteria-based therapy Self-assembly Nanoparticle Surface functionalization Biomanufacturing Intratumoral transport Cancer 



The authors would like to thank Samir Mitragotri Laboratory for invaluable discussions regarding the particle stretching technique and Eric Leaman for help with the CAD schematic. This work was supported by the National Science Foundation (IIS-117519 and CAREER award, CBET-1454226).


  1. 1.
    Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592CrossRefPubMedGoogle Scholar
  2. 2.
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:16014CrossRefGoogle Scholar
  3. 3.
    Han Bae Y, Park K, Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205CrossRefGoogle Scholar
  4. 4.
    Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109Google Scholar
  5. 5.
    Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2:281–298CrossRefPubMedGoogle Scholar
  6. 6.
    Nia HT, Liu H, Seano G et al (2016) Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1:4CrossRefGoogle Scholar
  7. 7.
    Forbes NS (2006) Profile of a bacterial tumor killer. Nat Biotechnol 24:1484–1485CrossRefPubMedGoogle Scholar
  8. 8.
    Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 262:3–11Google Scholar
  9. 9.
    Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556CrossRefPubMedGoogle Scholar
  10. 10.
    Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, Bermudes D, Brecher SM, Margitich D, Turnier J, Li Z, Luo X, King I, Zheng LM (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 181:1996–2002CrossRefPubMedGoogle Scholar
  11. 11.
    Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR, Vail DM, MacEwen EG (2005) Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res 11:4827–4834CrossRefPubMedGoogle Scholar
  12. 12.
    Toso Gill V, Hwu P, Marincola F, Restifo N, Schwartzentruber D, Sherry R, Topalian S, Yang J, Stock F, Freezer L, Morton K, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SJ (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152CrossRefPubMedGoogle Scholar
  13. 13.
    Maciaga Radulovicb S, Rothmana JP (2009) The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983Google Scholar
  14. 14.
    Kramer MG, Masner M, Ferreira FA, Hoffman RM (2018) Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front Microbiol 9:16Google Scholar
  15. 15.
    Curran CS, Rasooly A, He M, Prickril B, Thurin M, Sharon E (2018) Report on the NCI microbial-based cancer therapy conference. Cancer Immunol Res 6:122–126CrossRefPubMedGoogle Scholar
  16. 16.
    Bettegowda C, Dang LH, Abrams R, Huso DL, Dillehay L, Cheong I, Agrawal N, Borzillary S, McCaffery JM, Watson EL, Lin K-S, Bunz F, Baidoo K, Pomper MG, Kinzler KW, Vogelstein B, Zhou S (2003) Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci U S A 100:15083–15088CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yazawa Fujimori M, Amano J, Kano Y, Taniguchi SK (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther 7:269–274CrossRefPubMedGoogle Scholar
  18. 18.
    Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anné J (2002) Clostridium spores for tumor-specific drug delivery. Anti-Cancer Drugs 13:115–125CrossRefPubMedGoogle Scholar
  19. 19.
    Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Env Microbiol 73:3061–3068CrossRefGoogle Scholar
  20. 20.
    Minton NP (2003) Clostridia in cancer therapy. Nat Rev Microbiol 1:237–242CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stritzker J, Weibel S, Seubert C, Götz A, Tresch A, van Rooijen N, Oelschlaeger TA, Hill PJ, Gentschev I, Szalay AA (2010) Enterobacterial tumor colonization in mice depends on bacterial metabolism and macrophages but is independent of chemotaxis and motility. Int J Med Microbiol 300:449–456CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J, Lin SL, Luo X, Miller SI, Zheng L, King I, Pawelek JM, Bermudes D (1999) Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41CrossRefPubMedGoogle Scholar
  26. 26.
    Forbes NS, Munn LL, Fukumura D, Jain RK (2003) Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res 63:5188–5193PubMedGoogle Scholar
  27. 27.
    Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–4544PubMedGoogle Scholar
  28. 28.
    Westphal K, Leschner S, Jablonska J, Loessner H, Weiss S (2008) Containment of tumor-colonizing bacteria by host neutrophils. Cancer Res 68:2952–2960CrossRefPubMedGoogle Scholar
  29. 29.
    Traore MA, Damico CM, Behkam B (2014) Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems. Appl Phys Lett 105:173702CrossRefGoogle Scholar
  30. 30.
    Darnton N, Turner L, Breuer K, Berg H (2004) Moving fluid with bacterial carpets. Biophyiscal J 86:1863–1870CrossRefGoogle Scholar
  31. 31.
    Broadway KM, Suh S, Behkam B, Scharf BE (2017) Optimizing the restored chemotactic behavior of anticancer agent Salmonella enterica serovar Typhimurium VNP20009. J Biotechnol 251:76–83CrossRefPubMedGoogle Scholar
  32. 32.
    Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A 104:11901–11904CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sahari A, Headen D, Behkam B (2012) Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed Microdevices 14:999–1007CrossRefPubMedGoogle Scholar
  34. 34.
    Sahari A, Traore MA, Scharf BE, Behkam B (2014) Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Biomed Microdevices 16:717–725CrossRefPubMedGoogle Scholar
  35. 35.
    Graham JM. (2001). Biological centrifugation. Bios Scientific Publishers Limited, Oxford, UKGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mahama A. Traore
    • 1
    • 2
  • Ali Sahari
    • 2
  • Bahareh Behkam
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringVirginia TechBlacksburgUSA
  2. 2.School of Biomedical Engineering and SciencesVirginia TechBlacksburgUSA
  3. 3.Macromolecules Innovation InstituteVirginia TechBlacksburgUSA

Personalised recommendations