Advertisement

Enzyme-Linked Immunosorbent Assay to Quantify Targeting Molecules on Nanoparticles

  • Rachel S. Riley
  • Jilian R. Melamed
  • Emily S. DayEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1831)

Abstract

Molecular targeting presents a promising means of improving the specificity of cancer therapeutics, increasing accumulation at the cancer site and limiting off-target effects. These targeting schemes can be applied to nanoparticle-based treatments to further enhance their anticancer efficacy. Here, we describe methods to conjugate antibodies to silica-gold nanoshells and to quantify the resulting antibody content on the nanoparticles using a solution-based enzyme-linked immunosorbent assay (ELISA). Although we will be using anti-EGFR (epidermal growth factor receptor) antibodies conjugated to gold-silica nanoshells as a model system, this method is adaptable to quantify a range of targeting antibodies and proteins on various types of nanoparticles.

Key words

ELISA Nanoparticles Molecular targeting Antibodies Cancer nanotechnology 

References

  1. 1.
    Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5(209):209ra152 *equal contributionCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT (2013) Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7(11):9571–9584CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9(9):3258–3261CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–835CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Day ES, Zhang L, Thompson PA, Zawaski JA, Kaffes CC, Gaber MW, Blaney SM, West JL (2012) Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine (Lond) 7(8):1133–1148CrossRefGoogle Scholar
  7. 7.
    Day ES, Thompson PA, Zhang L, Lewinski NA, Ahmed N, Drezek RA, Blaney SM, West JL (2011) Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neuro-Oncol 104(1):55–63CrossRefGoogle Scholar
  8. 8.
    Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 8(3):449–467CrossRefGoogle Scholar
  9. 9.
    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769CrossRefPubMedGoogle Scholar
  10. 10.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392PubMedGoogle Scholar
  11. 11.
    Huynh NT, Roger E, Lautram N, Benoît J-P, Passirani C (2010) The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 5(9):1415–1433CrossRefGoogle Scholar
  12. 12.
    Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626CrossRefPubMedGoogle Scholar
  13. 13.
    Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL (2010) Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomedicine 5:445–454CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135CrossRefPubMedGoogle Scholar
  15. 15.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefPubMedGoogle Scholar
  16. 16.
    Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine 1(2):149–154CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48(3):416–427CrossRefPubMedGoogle Scholar
  18. 18.
    Rostro-Kohanloo BC, Bickford LR, Payne CM, Day ES, Anderson LJE, Zhong M, Lee S, Mayer KM, Zal T, Adam L, Dinney CPN, Drezek RA, West JL, Hafner JH (2009) The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology 20(43):434005CrossRefPubMedGoogle Scholar
  19. 19.
    Pasqualini R, Koivenuen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15(6):542–546CrossRefPubMedGoogle Scholar
  20. 20.
    Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3(2):314–320CrossRefPubMedGoogle Scholar
  21. 21.
    Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120(1-2):18–26CrossRefPubMedGoogle Scholar
  22. 22.
    Riley RS, Day ES (2017) Frizzled7 antibody‐functionalized nanoshells enable multivalent binding for Wnt signaling inhibition in triple negative breast cancer cells. Small 13(26): 1700544CrossRefGoogle Scholar
  23. 23.
    Erickson TA, Tunnell JW (2010) Gold nanoshells in biomedical applications. In: Kumar SSRC (ed) Nanotechnologies for the life sciences, vol 3. Wiley, Weinheim, pp 1–44Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rachel S. Riley
    • 1
  • Jilian R. Melamed
    • 1
  • Emily S. Day
    • 1
    Email author
  1. 1.University of Delaware Biomedical EngineeringNewarkUSA

Personalised recommendations