Skip to main content

Genome-Wide Identification of Chromatin Domains Anchored at the Nuclear Periphery in Plants

Part of the Methods in Molecular Biology book series (MIMB,volume 1830)

Abstract

As a functional compartment, the nuclear periphery plays critical roles in regulating the spatial organization of chromatin in the nuclei and gene expression. Generally, the nuclear periphery is a transcriptionally repressed compartment enriched for silenced chromatin. Methods of investigating chromatin positioning at the nuclear periphery in plants will substantially advance our understanding of transcriptional regulation in this subnuclear compartment. Here, we describe a detailed RE-ChIP-seq (restriction enzyme-mediated ChIP-sequencing) protocol, which combines restriction enzyme-mediated chromatin fragmentation, chromatin immunoprecipitation, and next generation sequencing approaches, to identify chromatin that positioned at the nuclear periphery in Arabidopsis. Different from a regular chromatin immunoprecipitation method, RE-ChIP allows specific enrichment of chromatin located near the protein of interest regardless of having direct interactions. In principle, this approach is applicable to identify target chromatin of transcriptional coregulators, which often do not directly bind DNA.

Key words

  • RE-ChIP
  • Nuclear periphery
  • Chromatin positioning

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harr JC, Gonzalez-Sandoval A, Gasser SM (2016) Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 17:139–155

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pawar V, Poulet A, Detourne G, Tatout C, Vanrobays E, Evans DE, Graumann K (2016) A novel family of plant nuclear envelope-associated proteins. J Exp Bot 67:5699–5710

    CrossRef  CAS  PubMed  Google Scholar 

  4. Poulet A, Duc C, Voisin M, Desset S, Tutois S, Vanrobays E, Benoit M, Evans DE, Probst AV, Tatout C (2017) The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Sci 130:590–601

    CrossRef  CAS  PubMed  Google Scholar 

  5. Kubben N, Adriaens M, Meuleman W, Voncken JW, van Steensel B, Misteli T (2012) Mapping of lamin A- and progerin-interacting genome regions. Chromosoma 121:447–464

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lund E, Oldenburg AR, Delbarre E, Freberg CT, Duband-Goulet I, Eskeland R, Buendia B, Collas P (2013) Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res 23:1580–1589

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita M, Perez-Mancera PA, Bennett DC, Chong H, Kimura H, Narita M (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27:1800–1808

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, Aggarwala V, Cruickshanks HA, Rai TS, McBryan T, Gregory BD, Adams PD, Berger SL (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27:1787–1799

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc 2:1467–1478

    CrossRef  CAS  PubMed  Google Scholar 

  10. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428

    CrossRef  CAS  PubMed  Google Scholar 

  11. Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

    CrossRef  CAS  PubMed  Google Scholar 

  12. Ciska M, Moreno Diaz de la Espina S (2014) The intriguing plant nuclear lamina. Front Plant Sci 5:166

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Parry G (2015) The plant nuclear envelope and regulation of gene expression. J Exp Bot 66:1673–1685

    CrossRef  CAS  PubMed  Google Scholar 

  14. Bi X, Cheng Y, Hu B, Ma X, Wu R, Wang J, Liu C (2017) Non-random domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res 27:1162

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyd KE, Farnham PJ (1997) Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol 17:2529–2537

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang SH, Vieira K, Bungert J (2002) Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo. Nucleic Acids Res 30:e44

    CrossRef  PubMed  Google Scholar 

  17. Schuch R, Agelopoulos K, Neumann A, Brandt B, Burger H, Korsching E (2012) Site-specific chromatin immunoprecipitation: a selective method to individually analyze neighboring transcription factor binding sites in vivo. BMC Res Notes 5:109

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:246–256

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Deutsche Forschungsgemeinschaft (LI 2862/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bi, X., Liu, C. (2018). Genome-Wide Identification of Chromatin Domains Anchored at the Nuclear Periphery in Plants. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols