Skip to main content

Genome-Wide TSS Identification in Maize

  • Protocol
  • First Online:
Book cover Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

Regulation of gene expression is a fundamental biological process that relies on transcription factors (TF) recognizing specific cis motifs in the regulatory regions of the genes that they control. In most eukaryotic organisms, cis-regulatory elements are significantly enriched around the transcription start site (TSS). However, different from other genic features, TSSs need to be experimentally determined, becoming then important components of genome annotations. One of the methods for experimentally determining TSSs at the genome-wide level is CAGE (cap analysis of gene expression). This chapter describes how to prepare a CAGE library for sequencing, starting with RNA extraction, library construction, and quality controls before proceed to sequencing in the Illumina platform. We then describe how to use a computational pipeline to determine, from the alignment of CAGE tags, the genome-wide location of TSSs, followed with statistical approaches required to cluster TSSs that operate as transcriptional units, and to determine core promoter properties such as shape. The analyses described here focus on maize, since its large and yet deficiently annotated genome creates some unique challenges, but with some modifications can be easily adopted for other organisms as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brkljacic J, Grotewold E (2017) Combinatorial control of plant gene expression. Biochim Biophys Acta 1860:31–40

    Article  CAS  PubMed  Google Scholar 

  2. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davie K, Jacobs J, Atkins M, Potier D, Christiaens V, Halder G, Aerts S (2015) Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling. PLoS Genet 11:e1004994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES (2016) Open chromatin reveals the functional maize genome. Proc Natl Acad Sci U S A 113:E3177–E3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339:225–229

    Article  CAS  PubMed  Google Scholar 

  8. Lenhard B, Sandelin A, Carninci P (2012) Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13:233–245

    Article  CAS  PubMed  Google Scholar 

  9. Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batut P, Gingeras TR (2013) Rampage: Promoter activity profiling by paired-end sequencing of 5′-complete cdnas. Curr Protoc Mol Biol 104:Unit 25B 11

    Google Scholar 

  11. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J (2010) A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7:521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mejia-Guerra MK, Li W, Galeano NF, Vidal M, Gray J, Doseff AI, Grotewold E (2015) Core promoter plasticity between maize tissues and genotypes contrasts with predominance of sharp transcription initiation sites. Plant Cell 27:3309–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi H, Kato S, Murata M, Carninci P (2012) CAGE (cap analysis of gene expression): A protocol for the detection of promoter and transcriptional networks. In: Deplancke B, Gheldof N (eds) Gene regulatory networks: methods and protocols, Methods in molecular biology, vol 786. Humana Press Inc., Totowa, NJ, pp 181–200

    Chapter  Google Scholar 

  14. Takahashi H, Lassmann T, Murata M, Carninci P (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haberle V, Forrest AR, Hayashizaki Y, Carninci P, Lenhard B (2015) Cager: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res 43:e51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C, van Nimwegen E (2009) Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepcage data. Genome Biol 10:R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A (2008) A code for transcription initiation in mammalian genomes. Genome Res 18:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nepal C, Hadzhiev Y, Previti C, Haberle V, Li N, Takahashi H, Suzuki AM, Sheng Y, Abdelhamid RF, Anand S, Gehrig J, Akalin A, Kockx CE, van der Sloot AA, van Ijcken WF, Armant O, Rastegar S, Watson C, Strahle U, Stupka E, Carninci P, Lenhard B, Muller F (2013) Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res 23:1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van IWF, Armant O, Ferg M, Strahle U, Carninci P, Muller F, Lenhard B (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507:381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, Yu C, Booth BW, Zhang D, Wan KH, Yang L, Boley N, Andrews J, Kaufman TC, Graveley BR, Bickel PJ, Carninci P, Carlson JW, Celniker SE (2011) Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res 21:182–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lassmann T, Hayashizaki Y, Daub CO (2009) TAGDUST – a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25:2839–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11:Unit 11 17

    Google Scholar 

  24. Faulkner GJ, Forrest AR, Chalk AM, Schroder K, Hayashizaki Y, Carninci P, Hume DA, Grimmond SM (2008) A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91:281–288

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto T, de Hoon MJ, Grimmond SM, Daub CO, Hayashizaki Y, Faulkner GJ (2009) Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using mumrescuelite. Bioinformatics 25:2613–2614

    Article  CAS  PubMed  Google Scholar 

  26. Pagès H (2018) BSgenome: Software infrastructure for efficient representation of full genomes and their SNPs. R package version 1.48.0

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the USA National Science Foundation IOS-1125620 and IOS-1733633 to A.I.D and E.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Grotewold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mejia-Guerra, M.K., Li, W., Doseff, A.I., Grotewold, E. (2018). Genome-Wide TSS Identification in Maize. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics