Advertisement

NanoCAGE-XL: An Approach to High-Confidence Transcription Start Site Sequencing

  • Maria G. Ivanchenko
  • Molly Megraw
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1830)

Abstract

Identifying the transcription start sites (TSS) of genes is essential for characterizing promoter regions. Several protocols have been developed to capture the 5′ end of transcripts via Cap-Analysis of Gene Expression (CAGE) or linker-ligation strategies such as Paired-End Analysis of Transcription Start Sites (PEAT), but often require large amounts of tissue. More recently, nanoCAGE was developed for sequencing on the Illumina GAIIx to overcome this limitation. In this chapter, we present the nanoCAGE-XL protocol, the first publicly available adaptation of nanoCAGE for sequencing on recent ultra-high-throughput platforms such as Illumina HiSeq-2000. NanoCAGE-XL provides a method for precise transcription start site identification in large eukaryotic genomes, even in cases where input total RNA quantity is very limited.

Key words

Transcription start site (TSS) Promoter NanoCAGE Capped analysis of gene expression High-throughput sequencing 

Notes

Acknowledgments

We would like to thank Charles Plessy of the RIKEN Center for Life Science Technologies and Jenn To of Grassroots Biotechnology for technical advice on the nanoCAGE protocol. We would also like to thank Mark Dasenko of the Center for Genome Research and Biocomputing at Oregon State University for troubleshooting assistance in sample preparation for sequencing. This work was supported by NIH grant GM097188 and startup funds from Oregon State University to M.M.

References

  1. 1.
    Plessy C, Bertin N, Takahashi H, Simone R, Salimullah M, Lassmann T, Vitezic M, Severin J, Olivarius S, Lazarevic D, Hornig N, Orlando V, Bell I, Gao H, Dumais J, Kapranov P, Wang H, Davis CA, Gingeras TR, Kawai J, Daub CO, Hayashizaki Y, Gustincich S, Carninci P (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Megraw M, Pereira F, Jensen ST, Ohler U, Hatzigeorgiou AG (2009) A transcription factor affinity-based code for mammalian transcription initiation. Genome Res 19:644–656CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Morton T, Petricka J, Corcoran DL, Li S, Winter CM, Carda A, Benfey PN, Ohler U, Megraw M (2014) Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. Plant Cell 26:2746–2760CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J (2010) A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7:521–527CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Takahashi H, Kato S, Murata M, Carninci P (2012) CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. Methods Mol Biol 786:181–200CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Batut P, Dobin A, Plessy C, Carninci P, Gingeras TR (2013) High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res 23:169–180CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nepal C, Hadzhiev Y, Previti C, Haberle V, Li N, Takahashi H, Suzuki AM, Sheng Y, Abdelhamid RF, Anand S, Gehrig J, Akalin A, Kockx CE, van der Sloot AA, van Ijcken WF, Armant O, Rastegar S, Watson C, Strahle U, Stupka E, Carninci P, Lenhard B, Muller F (2013) Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res 23:1938–1950CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Salimullah M, Sakai M, Plessy C, Carninci P (2011, 2011) NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harb Protoc.  https://doi.org/10.1101/pdb.prot5559 pdb prot5559
  9. 9.
    Tang DT, Plessy C, Salimullah M, Suzuki AM, Calligaris R, Gustincich S, Carninci P (2012) Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Res 41:e44CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Batut P, Gingeras TR (2013) RAMPAGE: promoter activity profiling by paired-end sequencing of 5'-complete cDNAs. Curr Protoc Mol Biol 104:Unit 25B 11. doi: https://doi.org/10.1002/0471142727.mb25b11s104
  11. 11.
    Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14:R131CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cumbie JS, Ivanchenko MG, Megraw M (2015) NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites. BMC Genomics 16:597.  https://doi.org/10.1186/s12864-015-1670-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  2. 2.Center for Genome Research and BiocomputingOregon State UniversityCorvallisUSA
  3. 3.School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallisUSA

Personalised recommendations