Abstract
Understanding the development of multicellular organisms requires the identification of regulators, notably transcription factors, and specific transcript populations associated with tissue differentiation. Laser capture microdissection (LCM) is one of the techniques that enable the analysis of distinct tissues or cells within an organ. Coupling this technique with RNA sequencing (RNAseq) makes it extremely powerful to obtain a genome-wide and dynamic view of gene expression. Moreover, RNA sequencing allows two or potentially more interacting organisms to be analyzed simultaneously. In this chapter, a LCM-RNAseq protocol optimized for root and symbiotic root nodule analysis is presented, using the model legume Medicago truncatula (in interaction with Sinorhizobium meliloti in the nodule samples). This includes the description of procedures for plant material fixation, embedding, and micro-dissection; it is followed by a presentation of techniques for RNA extraction and amplification, adapted for the simultaneous analysis of plant and bacterial cells in interaction or, more generally, polyadenylated and non-polyadenylated RNAs. Finally, step-by-step statistical analyses of RNAseq data are described. Those are critical for quality assessment of the whole procedure and for the identification of differentially expressed genes.
Key words
- Laser capture micro-dissection
- RNA sequencing
- rRNA depletion
- Root
- Nodule
- Statistical analyses
This is a preview of subscription content, access via your institution.
Buying options





References
Benfey PN (2012) Toward a systems analysis of the root. Cold Spring Harb Symp Quant Biol 77:91–96. https://doi.org/10.1101/sqb.2012.77.014506
Sparks EE, Drapek C, Gaudinier A, Li S, Ansariola M, Shen N, Hennacy JH, Zhang J, Turco G, Petricka JJ, Foret J, Hartemink AJ, Gordan R, Megraw M, Brady SM, Benfey PN (2016) Establishment of expression in the SHORTROOT-SCARECROW transcriptional cascade through opposing activities of both activators and repressors. Dev Cell 39(5):585–596. https://doi.org/10.1016/j.devcel.2016.09.031
Moreno-Risueno MA, Sozzani R, Yardimci GG, Petricka JJ, Vernoux T, Blilou I, Alonso J, Winter CM, Ohler U, Scheres B, Benfey PN (2015) Transcriptional control of tissue formation throughout root development. Science 350(6259):426–430. https://doi.org/10.1126/science.aad1171
Theissen G, Melzer R, Rumpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143(18):3259–3271. https://doi.org/10.1242/dev.134080
Chandler JW, Werr W (2015) Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci 20(5):291–300. https://doi.org/10.1016/j.tplants.2015.02.003
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D (2014) Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(6197):1255215. https://doi.org/10.1126/science.1255215
Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18(6):1030–1040
Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2(8):615–619. https://doi.org/10.1038/nmeth0805-615
Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851):801–806. https://doi.org/10.1126/science.1146265
Zhang C, Barthelson RA, Lambert GM, Galbraith DW (2008) Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147(1):30–40. https://doi.org/10.1104/pp.107.115246
Mustroph A, Zanetti ME, Jang CJ, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106(44):18843–18848. https://doi.org/10.1073/pnas.0906131106
Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69(3):510–528. https://doi.org/10.1111/j.1365-313X.2011.04810.x
Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157(4):2023–2043. https://doi.org/10.1104/pp.111.186635
Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190(2):351–368. https://doi.org/10.1111/j.1469-8137.2010.03535.x
Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77(6):817–837. https://doi.org/10.1111/tpj.12442
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJ, Gouzy J, Frugier F, Gamas P (2016) A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiol 171(3):2256–2276. https://doi.org/10.1104/pp.16.00711
Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H (2013) Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 8(5):e64377. https://doi.org/10.1371/journal.pone.0064377
Harrop TW, Ud Din I, Gregis V, Osnato M, Jouannic S, Adam H, Kater MM (2016) Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. Plant J 86(1):75–88. https://doi.org/10.1111/tpj.13147
Yu P, Baldauf JA, Lithio A, Marcon C, Nettleton D, Li C, Hochholdinger F (2016) Root type-specific reprogramming of maize pericycle transcriptomes by local high nitrate results in disparate lateral root branching patterns. Plant Physiol 170(3):1783–1798. https://doi.org/10.1104/pp.15.01885
Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang D, Wang X, Drews GN, Yadegari R (2015) RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 27(3):513–531. https://doi.org/10.1105/tpc.114.135657
Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168(4):1684–1701. https://doi.org/10.1104/pp.15.00287
Torti S, Fornara F, Vincent C, Andrés F, Nordström K, Göbel U, Knoll D, Schoof H, Coupland G (2012) Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell 24(2):444–462. https://doi.org/10.1105/tpc.111.092791
Ji H, Gheysen G, Denil S, Lindsey K, Topping JF, Nahar K, Haegeman A, De Vos WH, Trooskens G, Van Criekinge W, De Meyer T, Kyndt T (2013) Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. J Exp Bot 64(12):3885–3898. https://doi.org/10.1093/jxb/ert219
Khan D, Millar JL, Girard IJ, Chan A, Kirkbride RC, Pelletier JM, Kost S, Becker MG, Yeung EC, Stasolla C, Goldberg RB, Harada JJ, Belmonte MF (2015) Transcriptome atlas of the Arabidopsis funiculus – a study of maternal seed subregions. Plant J 82(1):41–53. https://doi.org/10.1111/tpj.12790
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8
Schmid MW, Schmidt A, Klostermeier UC, Barann M, Rosenstiel P, Grossniklaus U (2012) A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing. PLoS One 7(1):e29685. https://doi.org/10.1371/journal.pone.0029685
Blokhina O, Valerio C, Sokołowska K, Zhao L, Kärkönen A, Niittylä T, Fagerstedt K (2016) Laser capture microdissection protocol for xylem tissues of woody plants. Front Plant Sci 7:1965. https://doi.org/10.3389/fpls.2016.01965
Chandran D, Scanlon MJ, Ohtsu K, Timmermans MC, Schnable PS, Wildermuth MC (2015) Laser microdissection-mediated isolation and in vitro transcriptional amplification of plant RNA. Curr Protoc Mol Biol 112:25A.23.21–25A.23.23. https://doi.org/10.1002/0471142727.mb25a03s112
Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132(1):27–35
Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazono M (2010) A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. J Plant Res 123(6):807–813. https://doi.org/10.1007/s10265-010-0319-4
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10
Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15(3):583–596
Day RC (2010) Laser microdissection of paraffin-embedded plant tissues for transcript profiling. Methods Mol Biol 655:321–346. https://doi.org/10.1007/978-1-60761-765-5_22
Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10(8):397–406. https://doi.org/10.1016/j.tplants.2005.06.006
Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FM (2016) An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Methods 12:25. https://doi.org/10.1186/s13007-016-0123-9
Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42(1):111–123. https://doi.org/10.1111/j.1365-313X.2005.02355.x
Kehr J (2003) Single cell technology. Curr Opin Plant Biol 6(6):617–621
Gautam V, Sarkar AK (2015) Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 57(4):299–308. https://doi.org/10.1007/s12033-014-9824-3
Satgé C, Moreau S, Sallet E, Lefort G, Auriac MC, Remblière C, Cottret L, Gallardo K, Noirot C, Jardinaud MF, Gamas P (2016) Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat Plants 2(11):16166. https://doi.org/10.1038/nplants.2016.166
Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase pol IVb/pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135(4):635–648. https://doi.org/10.1016/j.cell.2008.09.035
Delfour C, Roger P, Bret C, Berthe ML, Rochaix P, Kalfa N, Raynaud P, Bibeau F, Maudelonde T, Boulle N (2006) RCL2, a new fixative, preserves morphology and nucleic acid integrity in paraffin-embedded breast carcinoma and microdissected breast tumor cells. J Mol Diagn 8(2):157–169. https://doi.org/10.2353/jmoldx.2006.050105
Dotti I, Bonin S, Basili G, Nardon E, Balani A, Siracusano S, Zanconati F, Palmisano S, De Manzini N, Stanta G (2010) Effects of formalin, methacarn, and fineFIX fixatives on RNA preservation. Diagn Mol Pathol 19(2):112–122. https://doi.org/10.1097/PDM.0b013e3181b520f8
Vitha S, Baluska F, Mews M, Volkmann D (1997) Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. J Histochem Cytochem 45(1):89–95
Steedman HF (1957) Polyester wax; a new ribboning embedding medium for histology. Nature 179(4574):1345
McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297. https://doi.org/10.1093/nar/gks042
Acknowledgments
This work was supported by a grant from the Agence Nationale de la Recherche (ANR) (SYMbiMICS project). We are grateful to Jérôme Gouzy (LIPM, Toulouse) who contributed to launch the SYMbiMICS project and provided strong bioinformatics support. We thank Yves Martinez (imagery platform, FR AIB, Toulouse) for his advice on the LCM equipment, Olivier Catrice (LIPM) and Antonius Timmers (LIPM) for their advice on plant sample fixing and embedding, as well as Yann Pecrix (LIPM) and Marc Ellis for critical reading of this manuscript. The microdissection equipment was provided by the FR AIB imagery platform.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic Supplementary Material
Supplementary File 1
■(TXT 73 kb)
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Roux, B., Rodde, N., Moreau, S., Jardinaud, MF., Gamas, P. (2018). Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti . In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_12
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8657-6_12
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8656-9
Online ISBN: 978-1-4939-8657-6
eBook Packages: Springer Protocols