Skip to main content

High Impact Gene Discovery: Simple Strand-Specific mRNA Library Construction and Differential Regulatory Analysis Based on Gene Co-Expression Network

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

Plant transcription factors have potential to behave as hubs in gene regulatory networks through altering the expression of many downstream genes, and identification of such hub transcription factors strongly enhances our understating of biological processes. Transcriptome analysis has become a staple of gene expression analyses. In addition to current advances in Next Generation Sequencing (NGS) technology, various methods for mRNA library construction and downstream data analyses have been enthusiastically developed. Here, we describe Breath Adapter Directional sequencing (BrAD-seq), a simple strand-specific mRNA library preparation for the Illumina platform, allowing easy scaling of transcriptome experiments with low reagent and labor costs. This protocol includes our recent modifications and the detailed practical procedure for BrAD-seq. Because extracting biological meanings from large-scale transcriptome data presents a significant challenge, we also describe a new analytical method that goes beyond differential expression. Differential regulatory analysis (DRA) is based on a gene co-expression network to address which regulatory factor or factors have the ability to predict the abundance of differentially expressed genes between two groups or conditions. This protocol provides a ready-to-use informatics pipeline from raw sequence data to DRA for plant transcriptome datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR:

AMPure XP bead resuspension buffer

BrAD:

Breath adapter directional sequencing

DEGs:

Differentially expressed genes

DGE:

Digital gene expression

DRA:

Differential regulatory analysis

LBB:

Lysis/binding buffer

LSB:

Low-salt buffer

NGS:

Next generation sequencing

SHO:

Shotgun

WBA:

Washing buffer A

WBB:

Washing buffer B

References

  1. Ramirez SR, Basu C (2009) Comparative analyses of plant transcription factor databases. Curr Genomics 10(1):10–17. https://doi.org/10.2174/138920209787581253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98. https://doi.org/10.1038/nrg2934

    Article  PubMed  CAS  Google Scholar 

  3. Mader U, Nicolas P, Richard H, Bessieres P, Aymerich S (2011) Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Curr Opin Biotechnol 22(1):32–41. https://doi.org/10.1016/j.copbio.2010.10.003

    Article  PubMed  CAS  Google Scholar 

  4. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517. https://doi.org/10.1101/gr.079558.108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Townsley BT, Covington MF, Ichihashi Y, Zumstein K, Sinha NR (2015) BrAD-seq: breath adapter directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction. Front Plant Sci 6:366. https://doi.org/10.3389/fpls.2015.00366

    Article  PubMed  PubMed Central  Google Scholar 

  7. von Hippel PH, Johnson NP, Marcus AH (2013) Fifty years of DNA "breathing": reflections on old and new approaches. Biopolymers 99(12):923–954. https://doi.org/10.1002/bip.22347

    Article  CAS  Google Scholar 

  8. Hudson NJ, Dalrymple BP, Reverter A (2012) Beyond differential expression: the quest for causal mutations and effector molecules. BMC Genomics 13:356. https://doi.org/10.1186/1471-2164-13-356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de la Fuente A (2010) From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases. Trends Genet 26(7):326–333. https://doi.org/10.1016/j.tig.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  10. Fukushima A (2013) DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene 518(1):209–214. https://doi.org/10.1016/j.gene.2012.11.028

    Article  PubMed  CAS  Google Scholar 

  11. Fukushima A, Nishizawa T, Hayakumo M, Hikosaka S, Saito K, Goto E, Kusano M (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol 158(4):1487–1502. https://doi.org/10.1104/pp.111.188367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ichihashi Y, Aguilar-Martinez JA, Farhi M, Chitwood DH, Kumar R, Millon LV, Peng J, Maloof JN, Sinha NR (2014) Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc Natl Acad Sci U S A 111(25):E2616–E2621. https://doi.org/10.1073/pnas.1402835111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sinha NR, Rowland SD, Ichihashi Y (2016) Using gene networks in EvoDevo analyses. Curr Opin Plant Biol 33:133–139. https://doi.org/10.1016/j.pbi.2016.06.016

    Article  PubMed  CAS  Google Scholar 

  14. Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP (2010) Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 26(7):896–904. https://doi.org/10.1093/bioinformatics/btq051

    Article  PubMed  CAS  Google Scholar 

  15. Deng SP, Zhu L, Huang DS (2015) Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks. BMC Genomics 16(Suppl 3):S4. https://doi.org/10.1186/1471-2164-16-S3-S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li J, Li YX, Li YY (2016) Differential regulatory analysis based on coexpression network in cancer research. Biomed Res Int 2016:4241293. https://doi.org/10.1155/2016/4241293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xu F, Yang J, Chen J, Wu Q, Gong W, Zhang J, Shao W, Mu J, Yang D, Yang Y, Li Z, Xie P (2015) Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression. BMC Bioinformatics 16:112. https://doi.org/10.1186/s12859-015-0543-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiang Z, Dong X, Li ZG, He F, Zhang Z (2016) Differential coexpression analysis reveals extensive rewiring of arabidopsis gene coexpression in response to pseudomonas syringae infection. Sci Rep 6:35064. https://doi.org/10.1038/srep35064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fukushima A, Kanaya S, Nishida K (2014) Integrated network analysis and effective tools in plant systems biology. Front Plant Sci 5:598. https://doi.org/10.3389/fpls.2014.00598

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fukushima A, Kusano M (2014) A network perspective on nitrogen metabolism from model to crop plants using integrated 'omics' approaches. J Exp Bot 65(19):5619–5630. https://doi.org/10.1093/jxb/eru322

    Article  PubMed  CAS  Google Scholar 

  21. Hudson NJ, Reverter A, Dalrymple BP (2009) A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput Biol 5(5):e1000382. https://doi.org/10.1371/journal.pcbi.1000382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by PRESTO, Japan Science and Technology Agency (JPMJPR15Q2) to YI and JSPS KAKENHI Grant Number 17 K07663 to AF, 15H05959 and 17H06172 to KS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Ichihashi .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary File 1:

(XLSX 40 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ichihashi, Y., Fukushima, A., Shibata, A., Shirasu, K. (2018). High Impact Gene Discovery: Simple Strand-Specific mRNA Library Construction and Differential Regulatory Analysis Based on Gene Co-Expression Network. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics