Skip to main content

Plastid Transient and Stable Interactions with Other Cell Compartments

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1829))

Abstract

Plastids are organelles delineated by two envelopes that play important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by signaling molecules and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, the mitochondria, the plasma membrane, the peroxisomes and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid–organelle contact sites and their functions are still enigmatic. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rolland N, Curien G, Finazzi G et al (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet 46:233–264. https://doi.org/10.1146/annurev-genet-110410-132544

    Article  PubMed  CAS  Google Scholar 

  2. Demmig-Adams B, Stewart JJ, Adams WW (2014) Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment. Philos Trans R Soc Lond Ser B Biol Sci 369(1640):20130244. https://doi.org/10.1098/rstb.2013.0244

    Article  Google Scholar 

  3. Larkin RM (2014) Influence of plastids on light signalling and development. Philos Trans R Soc Lond Ser B Biol Sci 369(1640):20130232. https://doi.org/10.1098/rstb.2013.0232

    Article  CAS  Google Scholar 

  4. Bobik K, Burch-Smith TM (2015) Chloroplast signaling within, between and beyond cells. Front Plant Sci 6:781. https://doi.org/10.3389/fpls.2015.00781

    Article  PubMed  PubMed Central  Google Scholar 

  5. Renaudin S, Capdepon M (1977) Association of Endoplasmic-Reticulum and Plastids in Tozzia-Alpina L scale leaves. J Ultrastruct Res 61(3):303–308. https://doi.org/10.1016/S0022-5320(77)80055-5

    Article  PubMed  CAS  Google Scholar 

  6. Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11(6):1151–1165

    Article  CAS  PubMed  Google Scholar 

  7. Barton KA, Wozny MR, Mathur N et al (2017) Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells. J Cell Sci 131(2):jcs202275. https://doi.org/10.1242/jcs.202275

    Article  CAS  Google Scholar 

  8. Perez-Sancho J, Tilsner J, Samuels AL et al (2016) Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol 26(9):705–717. https://doi.org/10.1016/j.tcb.2016.05.007

    Article  PubMed  CAS  Google Scholar 

  9. Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31(5):646–657. https://doi.org/10.1111/j.1365-3040.2007.01768.x

    Article  PubMed  Google Scholar 

  10. Hanson MR, Sattarzadeh A (2011) Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155(4):1486–1492. https://doi.org/10.1104/pp.110.170852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gray JC, Hansen MR, Shaw DJ et al (2012) Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J 69(3):387–398. https://doi.org/10.1111/j.1365-313X.2011.04800.x

    Article  PubMed  CAS  Google Scholar 

  12. Krenz B, Guo TW, Kleinow T (2014) Stromuling when stressed! Acta Soc Bot Pol 83(4):325–329. https://doi.org/10.5586/asbp.2014.050

    Article  CAS  Google Scholar 

  13. Brunkard JO, Runkel AM, Zambryski PC (2015) Chloroplasts extend stromules independently and in response to internal redox signals. Proc Natl Acad Sci U S A 112(32):10044–10049. https://doi.org/10.1073/pnas.1511570112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hanson MR, Sattarzadeh A (2013) Trafficking of proteins through plastid stromules. Plant Cell 25(8):2774–2782. https://doi.org/10.1105/tpc.113.112870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schattat MH, Griffiths S, Mathur N et al (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 24(4):1465–1477. https://doi.org/10.1105/tpc.111.095398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ishida H, Yoshimoto K, Izumi M et al (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148(1):142–155. https://doi.org/10.1104/pp.108.122770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. McLean B, Whatley JM, Juniper BE (1988) Continuity of chloroplast and endoplasmic reticulum membranes in Chara and equisetum. New Phytol 109:59–65

    Article  Google Scholar 

  18. Whatley JM, Mclean B, Juniper BE (1991) Continuity of chloroplast and endoplasmic-reticulum membranes in Phaseolus-Vulgaris. New Phytol 117(2):209–217. https://doi.org/10.1111/j.1469-8137.1991.tb04901.x

    Article  Google Scholar 

  19. Sparkes Imogen A, Frigerio L, Tolley N et al (2009) The plant endoplasmic reticulum: a cell-wide web. Biochem J 423(2):145–155. https://doi.org/10.1042/bj20091113

    Article  PubMed  CAS  Google Scholar 

  20. Schattat M, Barton K, Mathur J (2011) Correlated behavior implicates stromules in increasing the interactive surface between plastids and ER tubules. Plant Signal Behav 6(5):715–718 15085 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanson MR, Kohler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52(356):529–539

    Article  CAS  PubMed  Google Scholar 

  22. Kjellberg JM, Trimborn M, Andersson M et al (2000) Acyl-CoA dependent acylation of phospholipids in the chloroplast envelope. Biochim Biophys Acta 1485(2–3):100–110

    Article  CAS  PubMed  Google Scholar 

  23. Andersson MX, Goksor M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282(2):1170–1174. https://doi.org/10.1074/Jbc.M608124200

    Article  PubMed  CAS  Google Scholar 

  24. Vance JE (2014) MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 1841(4):595–609. https://doi.org/10.1016/j.bbalip.2013.11.014

    Article  PubMed  CAS  Google Scholar 

  25. Kornmann B (2013) The molecular hug between the ER and the mitochondria. Curr Opin Cell Biol 25:1–6. https://doi.org/10.1016/j.ceb.2013.02.010

    Article  CAS  Google Scholar 

  26. Schattat M, Barton K, Baudisch B et al (2011) Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol 155(4):1667–1677. https://doi.org/10.1104/pp.110.170480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Griffing LR, Lin C, Perico C et al (2017) Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. Protoplasma 254(1):43–56. https://doi.org/10.1007/s00709-016-0945-3

    Article  PubMed  Google Scholar 

  28. Natesan SK, Sullivan JA, Gray JC (2009) Myosin XI is required for actin-associated movement of plastid stromules. Mol Plant 2(6):1262–1272. https://doi.org/10.1093/mp/ssp078

    Article  PubMed  CAS  Google Scholar 

  29. Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipids metabolism. In: The Arabibopsis book. The American Society of Plant Biologists, Rockville. https://doi.org/10.1199/tab.0161

    Chapter  Google Scholar 

  30. Boudiere L, Botte CY, Saidani N et al (2012) Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells. Mol BioSyst 8(8):2023–2035., 2014. https://doi.org/10.1039/c2mb25067e

    Article  PubMed  CAS  Google Scholar 

  31. Block MA, Dorne AJ, Joyard J et al (1983) Preparation and characterization of membrane-fractions enriched in outer and inner envelope membranes from spinach-chloroplasts. 2. Biochemical-characterization. J Biol Chem 258(21):3281–3286

    Google Scholar 

  32. Dorne AJ, Joyard J, Block MA et al (1985) Localization of Phosphatidylcholine in outer envelope membrane of spinach-chloroplasts. J Cell Biol 100(5):1690–1697. https://doi.org/10.1083/Jcb.100.5.1690

    Article  PubMed  CAS  Google Scholar 

  33. Hurlock AK, Roston RL, Wang K et al (2014) Lipid trafficking in plant cells. Traffic 15(9):915–932. https://doi.org/10.1111/tra.12187

    Article  PubMed  CAS  Google Scholar 

  34. Block MA, Jouhet J (2015) Lipid trafficking at endoplasmic reticulum–chloroplast membrane contact sites. Curr Opin Cell Biol 35:21–29. https://doi.org/10.1016/j.ceb.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  35. Dormann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7(3):112–118. Pii S1360-1385(01)02216-6. https://doi.org/10.1016/S1360-1385(01)02216-6

    Article  PubMed  CAS  Google Scholar 

  36. Awai K, Marechal E, Block MA et al (2001) Two types of MGDG synthase genes, found widely in both 16 : 3 and 18 : 3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Ntl Acad Sci U S A 98(19):10960–10965. https://doi.org/10.1073/Pnas.181331498

    Article  CAS  Google Scholar 

  37. Kelly AA, Froehlich JE, Dormann P (2003) Disruption of the two Digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of Galactolipid synthesis. Plant Cell 15(11):2694–2706. https://doi.org/10.1105/tpc.016675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kobayashi K (2004) Arabidopsis type B Monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134(2):640–648. https://doi.org/10.1104/pp.103.032656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kobayashi K, Awai K, Nakamura M et al (2009) Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J 57(2):322–331. https://doi.org/10.1111/J.1365-313x.2008.03692.X

    Article  PubMed  CAS  Google Scholar 

  40. Benning C, Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280(4):2397–2400. https://doi.org/10.1074/jbc.R400032200

    Article  PubMed  CAS  Google Scholar 

  41. Froehlich JE, Benning C, Dormann P (2001) The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyldiacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276(34):31806–31812. https://doi.org/10.1074/jbc.M104652200

    Article  PubMed  CAS  Google Scholar 

  42. Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16

    Article  CAS  PubMed  Google Scholar 

  43. Browse J, Warwick N, Somerville CR et al (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3′ plant Arabidopsis thaliana. Biochem J 235(1):25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9(3):241–247. https://doi.org/10.1016/j.pbi.2006.03.012

    Article  PubMed  CAS  Google Scholar 

  45. Michaud M, Prinz WA, Jouhet J (2017) Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J 284:376–390. https://doi.org/10.1111/febs.13812

    Article  PubMed  CAS  Google Scholar 

  46. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24(1):44–52. https://doi.org/10.1016/j.tcb.2013.07.011

    Article  PubMed  CAS  Google Scholar 

  47. Mehrshahi P, Stefano G, Andaloro JM et al (2013) Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. Proc Ntl Acad Sci U S A 110(29):12126–12131. https://doi.org/10.1073/pnas.1306331110

    Article  Google Scholar 

  48. Andersson MX, Kjellberg JM, Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim Biophys Acta 1684(1–3):46–53. https://doi.org/10.1016/j.bbalip.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  49. Benning C (2008) A role for lipid trafficking in chloroplast biogenesis. Prog Lipid Res 47(5):381–389. https://doi.org/10.1016/j.plipres.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  50. Frentzen M (1986) Biosynthesis and desaturation of the different Diacylglycerol moieties in higher plants. J Plant Physiol 124(3–4):193–209. https://doi.org/10.1016/s0176-1617(86)80034-7

    Article  CAS  Google Scholar 

  51. Somerharju P (2015) Is spontaneous translocation of polar lipids between cellular organelles negligible? Lipid insights 8(Suppl 1):87–93. https://doi.org/10.4137/LPI.S31616

    Article  PubMed  Google Scholar 

  52. Phillips MC, Johnson WJ, Rothblat GH (1987) Mechanisms and consequences of cellular cholesterol exchange end transfer. Biochim Biophys Acta 906:223–276

    Article  CAS  PubMed  Google Scholar 

  53. Yin C, Andersson MX, Zhang H et al (2015) Phosphatidylcholine is transferred from chemically-defined liposomes to chloroplasts through proteins of the chloroplast outer envelope membrane. FEBS Lett 589(1):177–181. https://doi.org/10.1016/j.febslet.2014.11.044

    Article  PubMed  CAS  Google Scholar 

  54. Mongrand S, Cassagne C, Bessoule JJ (2000) Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122:845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bessoule JJ, Testet E, Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic reticulum membranes. Eur J Biochem 228(2):490–497

    Article  CAS  PubMed  Google Scholar 

  56. Jessen D, Roth C, Wiermer M et al (2015) Two activities of long-chain acyl-coenzyme a Synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiol 167(2):351–366. https://doi.org/10.1104/pp.114.250365

    Article  PubMed  CAS  Google Scholar 

  57. Tan X, Wang Q, Tian B et al (2011) A Brassica napus lipase locates at the membrane contact sites involved in chloroplast development. PLoS One 6(10):e26831. https://doi.org/10.1371/journal.pone.0026831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Marechal E, Bastien O (2014) Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts. J Theor Biol 361:1–13. https://doi.org/10.1016/j.jtbi.2014.07.013

    Article  PubMed  CAS  Google Scholar 

  59. Xu C, Fan J, Riekhof W et al (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22(10):2370–2379. https://doi.org/10.1093/emboj/cdg234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xu CC, Fan J, Froehlich JE et al (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17(11):3094–3110. https://doi.org/10.1105/Tpc.105.035592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Xu C, Fan J, Cornish AJ et al (2008) Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. Plant Cell 20(8):2190–2204. https://doi.org/10.1105/tpc.108.061176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang Z, Xu C, Benning C (2012) TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J 70(4):614–623. https://doi.org/10.1111/j.1365-313X.2012.04900.x

    Article  PubMed  CAS  Google Scholar 

  63. Lu B, Xu C, Awai K et al (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282(49):35945–35953. https://doi.org/10.1074/jbc.M704063200

    Article  PubMed  CAS  Google Scholar 

  64. Awai K, Xu C, Tamot B et al (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Ntl Acad Sci U S A 103(28):10817–10822. https://doi.org/10.1073/pnas.0602754103

    Article  CAS  Google Scholar 

  65. Fan J, Zhai Z, Yan C et al (2015) Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids. Plant Cell 27(10):2941–2955. https://doi.org/10.1105/tpc.15.00394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Roston R, Gao J, Murcha MW et al (2012) TGD1, −2, and −3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem 287(25):21406–21415. https://doi.org/10.1074/jbc.M112.370213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang Z, Benning C (2012) Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem Soc Trans 40(2):457–463. https://doi.org/10.1042/BST20110752

    Article  PubMed  CAS  Google Scholar 

  68. Botella C, Sautron E, Boudiere L et al (2016) ALA10, a phospholipid Flippase, controls FAD2/FAD3 desaturation of Phosphatidylcholine in the ER and affects chloroplast lipid composition in Arabidopsis thaliana. Plant Physiol 170(3):1300–1314. https://doi.org/10.1104/pp.15.01557

    Article  PubMed  CAS  Google Scholar 

  69. Botella C, Jouhet J, Block MA (2017) Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res 65:12–23. https://doi.org/10.1016/j.plipres.2016.11.001

    Article  PubMed  CAS  Google Scholar 

  70. Poulsen LR, Lopez-Marques RL, Pedas PR et al (2015) A phospholipid uptake system in the model plant Arabidopsis thaliana. Nat Commun 6:7649. https://doi.org/10.1038/ncomms8649

    Article  PubMed  CAS  Google Scholar 

  71. Dubots E, Audry M, Yamaryo Y et al (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285(9):6003–6011. https://doi.org/10.1074/jbc.M109.071928

    Article  PubMed  CAS  Google Scholar 

  72. Jouhet J, Marechal E, Baldan B et al (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167(5):863–874. https://doi.org/10.1083/jcb.200407022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lutz C, Engel L (2007) Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate? Protoplasma 231:183–192. https://doi.org/10.1007/s00709-007-0249-8

    Article  PubMed  CAS  Google Scholar 

  74. Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta 1366:235–255

    Article  CAS  Google Scholar 

  75. Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8(1):87–99. https://doi.org/10.1016/j.mito.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  76. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8(11):546–553. https://doi.org/10.1016/j.tplants.2003.09.015

    Article  PubMed  CAS  Google Scholar 

  77. Hodges M, Dellero Y, Keech O et al (2016) Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J Exp Bot 67(10):3015–3026. https://doi.org/10.1093/jxb/erw145

    Article  PubMed  CAS  Google Scholar 

  78. Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168(2):79–87. https://doi.org/10.1016/j.jplph.2010.07.012

    Article  PubMed  CAS  Google Scholar 

  79. Bailleul B, Berne N, Murik O et al (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524(7565):366–369. https://doi.org/10.1038/nature14599

    Article  PubMed  CAS  Google Scholar 

  80. Flori S, Jouneau PH, Finazzi G et al (2016) Ultrastructure of the Periplastidial compartment of the diatom Phaeodactylum tricornutum. Protist 167(3):254–267. https://doi.org/10.1016/j.protis.2016.04.001

    Article  PubMed  Google Scholar 

  81. Andersson MX, Stridh MH, Larsson KE et al (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537(1–3):128–132

    Article  CAS  PubMed  Google Scholar 

  82. Andersson MX, Larsson KE, Tjellstrom H et al (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280(30):27578–27586. https://doi.org/10.1074/jbc.M503273200

    Article  PubMed  CAS  Google Scholar 

  83. Michaud M, Gros V, Tardif M et al (2016) AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr Biol 26:627–639. https://doi.org/10.1016/j.cub.2016.01.011

    Article  PubMed  CAS  Google Scholar 

  84. Poirier Y, Thoma S, Somerville C et al (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97(3):1087–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jouhet J, Marechal E, Bligny R et al (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544(1–3):63–68. https://doi.org/10.1016/S0014-59793(03)00477-0

    Article  PubMed  CAS  Google Scholar 

  86. van der Laan M, Horvath SE, Pfanner N (2016) Mitochondrial contact site and cristae organizing system. Curr Opin Cell Biol 41:33–42. https://doi.org/10.1016/j.ceb.2016.03.013

    Article  PubMed  CAS  Google Scholar 

  87. Rampelt H, Zerbes RM, van der Laan M et al (2017) Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim Biophys Acta 1864(4):737–746. https://doi.org/10.1016/j.bbamcr.2016.05.020

    Article  PubMed  CAS  Google Scholar 

  88. Bohnert M, Wenz LS, Zerbes RM et al (2012) Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol Biol Cell 23(20):3948–3956. https://doi.org/10.1091/mbc.E12-04-0295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hessenberger M, Zerbes RM, Rampelt H et al (2017) Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nat Commun 8:15258. https://doi.org/10.1038/ncomms15258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336. https://doi.org/10.1016/j.tplants.2010.03.006

    Article  PubMed  CAS  Google Scholar 

  91. Takahashi Y, Takechi K, Takio S et al (2016) Both the transglycosylase and transpeptidase functions in plastid penicillin-binding protein are essential for plastid division in Physcomitrella patens. Proc Jpn Acad Ser B Phys Biol Sci 92(10):499–508. https://doi.org/10.2183/pjab.92.499

    Article  PubMed  PubMed Central  Google Scholar 

  92. Frederick SE, Gruber PJ, Newcomb EH (1975) Plant microbodies. Protoplasma 84:1–29

    Article  CAS  Google Scholar 

  93. Gao H, Metz J, Teanby NA et al (2016) In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers. Plant Physiol 170(1):263–272. https://doi.org/10.1104/pp.15.01529

    Article  PubMed  CAS  Google Scholar 

  94. Oikawa K, Matsunaga S, Mano S et al (2015) Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat Plants 1(4):15035. https://doi.org/10.1038/nplants.2015.35

    Article  PubMed  CAS  Google Scholar 

  95. Kornmann B, Currie E, Collins SR et al (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–481. https://doi.org/10.1126/science.1175088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Komatsu T, Kukelyansky I, McCaffery JM et al (2010) Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat Methods 7(3):206–208. https://doi.org/10.1038/nmeth.1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Reumann S, Bartel B (2016) Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics. Curr Opin Plant Biol 34:17–26. https://doi.org/10.1016/j.pbi.2016.07.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Prestele J, Hierl G, Scherling C et al (2010) Different functions of the C3HC4 zinc RING finger peroxins PEX10, PEX2, and PEX12 in peroxisome formation and matrix protein import. Proc Natl Acad Sci U S A 107(33):14915–14920. https://doi.org/10.1073/pnas.1009174107

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schumann U, Prestele J, O'Geen H et al (2007) Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Ntl Acad Sci U S A 104(3):1069–1074

    Article  CAS  Google Scholar 

  100. Wada M (2016) Chloroplast and nuclear photorelocation movements. Proc Jpn Acad Ser B Phys Biol Sci 92(9):387–411. https://doi.org/10.2183/pjab.92.387

    Article  PubMed  PubMed Central  Google Scholar 

  101. Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388(9):927–935. https://doi.org/10.1515/BC.2007.118

    Article  PubMed  CAS  Google Scholar 

  102. Oikawa K, Yamasato A, Kong SG et al (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148(2):829–842. https://doi.org/10.1104/pp.108.123075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Caplan JL, Kumar AS, Park E et al (2015) Chloroplast Stromules function during innate immunity. Dev Cell 34(1):45–57. https://doi.org/10.1016/j.devcel.2015.05.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171(3):1541–1550. https://doi.org/10.1104/pp.16.00375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G et al (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8(1):49. https://doi.org/10.1038/s41467-017-00074-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Erickson JL, Kantek M, Schattat MH (2017) Plastid-nucleus distance alters the behavior of Stromules. Front Plant Sci 8:1135. https://doi.org/10.3389/fpls.2017.01135

    Article  PubMed  PubMed Central  Google Scholar 

  107. Higa T, Suetsugu N, Kong SG et al (2014) Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. Proc Natl Acad Sci U S A 111(11):4327–4331. https://doi.org/10.1073/pnas.1317902111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Iwabuchi K, Hidema J, Tamura K et al (2016) Plant nuclei move to escape ultraviolet-induced DNA damage and cell death. Plant Physiol 170(2):678–685. https://doi.org/10.1104/pp.15.01400

    Article  PubMed  CAS  Google Scholar 

  109. Suetsugu N, Higa T, Kong SG et al (2015) Plastid movement impaired1 and plastid movement impaired1-related1 mediate photorelocation movements of both chloroplasts and nuclei. Plant Physiol 169(2):1155–1167. https://doi.org/10.1104/pp.15.00214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Caplan JL, Mamillapalli P, Burch-Smith TM et al (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132(3):449–462. https://doi.org/10.1016/j.cell.2007.12.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (MM) and by Deutsche Forschungsgemeinschaft (DFG) grant MU 4137/1-1 to SJMS. We thank William A. Prinz for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Michaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mueller-Schuessele, S.J., Michaud, M. (2018). Plastid Transient and Stable Interactions with Other Cell Compartments. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 1829. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8654-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8654-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8653-8

  • Online ISBN: 978-1-4939-8654-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics