Skip to main content

Rescue of Deletion Mutants to Isolate Plastid Transformants in Higher Plants

  • Protocol
  • First Online:
Book cover Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1829))

  • 1791 Accesses

Abstract

Plastid transformation is an attractive alternative to nuclear transformation enabling manipulation of native plastid genes and the insertion of foreign genes into plastids for applications in agriculture and industrial biotechnology. Transformation is achieved using dominant positive selection markers that confer resistance to antibiotics. The very high copy number of plastid DNA means that a prolonged selection step is required to obtain a uniform population of transgenic plastid genomes. Repair of mutant plastid genes with the corresponding functional allele allows selection based on restoration of the wild type phenotype. The use of deletion rather than point mutants avoids spontaneous reversion back to wild type. Combining antibiotic resistance markers with native plastid genes speeds up the attainment of homoplasmy and allows early transfer of transplastomic lines to soil where antibiotic selection is replaced by selection for photoautotrophic growth. Here we describe our method using the wild type rbcL gene as a plastid transformation marker to restore pigmentation and photosynthesis to a pale green heterotrophic rbcL mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917

    Article  CAS  Google Scholar 

  2. Ruf S, Hermann M, Berger IJ et al (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  3. Kanamoto H, Yamashita A, Asao H et al (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  CAS  PubMed  Google Scholar 

  4. Lelivelt CLC, McCabe MS, Newell CA et al (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  CAS  PubMed  Google Scholar 

  5. Schneider A, Stelljes C, Adams C et al (2015) Low frequency paternal transmission of plastid genes in Brassicaceae. Transgenic Res 24:267–277

    Article  CAS  PubMed  Google Scholar 

  6. Dufourmantel N, Pelissier B, Garcon F et al (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  CAS  PubMed  Google Scholar 

  7. Avila EM, Day A (2014) Stable plastid transformation of petunia. Methods Mol Biol 1132:277–293

    Article  CAS  PubMed  Google Scholar 

  8. Zubko MK, Zubko EI, van Zuilen K et al (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    Article  CAS  Google Scholar 

  9. Avila EM, Gisby MF, Day A (2016) Seamless editing of the chloroplast genome in plants. BMC Plant Biol 16(1):168. https://doi.org/10.1186/s12870-016-0857-6

    Article  CAS  Google Scholar 

  10. Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. Top Curr Genet 19:65–119

    Article  CAS  Google Scholar 

  11. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  CAS  PubMed  Google Scholar 

  12. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  CAS  PubMed  Google Scholar 

  13. De Cosa B, Moar W, Lee SB et al (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu YH, Stegemann S, Agrawal S et al (2017) Horizontal transfer of a synthetic metabolic pathway between plant species. Curr Biol 27:3034–3041.e3. https://doi.org/10.1016/j.cub.2017.08.044

    Article  PubMed  CAS  Google Scholar 

  15. Madesis P, Osathanunkul M, Georgopoulou U et al (2010) A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera. J Biotechnol 145:377–386

    Article  CAS  PubMed  Google Scholar 

  16. Gisby MF, Mellors P, Madesis P et al (2011) A synthetic gene increases TGF beta 3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol J 9:618–628

    Article  CAS  PubMed  Google Scholar 

  17. Zoschke R, Liere K, Borner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    Article  CAS  PubMed  Google Scholar 

  18. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

  19. Tabatabaei I, Ruf S, Bock R (2017) A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Plant Mol Biol 93:269–281

    Article  CAS  PubMed  Google Scholar 

  20. Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12:697–701

    Article  CAS  PubMed  Google Scholar 

  21. Gisby MF, Mudd EA, Day A (2012) Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. Plant Physiol 160:2219–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boynton JE, Gillham NW, Harris EH et al (1988) Chloroplast transformation in Chlamydomonas with high-velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  23. Klaus SMJ, Huang FC, Eibl C et al (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant J 35:811–821

    Article  CAS  PubMed  Google Scholar 

  24. Kode V, Mudd EA, Iamtham S et al (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909

    Article  CAS  PubMed  Google Scholar 

  25. Day A (2003) Antibiotic resistance genes in transgenic plants: their origins, undesirability and technologies for their elimination from genetically modified crops. In: Stewart CN (ed) Transgenic plants: current innovations and future trends. Horizon Scientific Press, Wymondham, pp 111–156

    Google Scholar 

  26. Day A, Kode V, Madesis P, Iamtham S (2004) Simple and efficient removal of marker genes from plastids by homologous recombination. In: Peña L (ed) Transgenic plants: methods and protocols. Humana Press, Totowa, NJ, pp 255–269

    Chapter  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  28. Finer JJ, Vain P, Jones MW et al (1992) Development of the particle inflow gun for DNA delivery to plant-cells. Plant Cell Rep 11:323–328

    Article  CAS  PubMed  Google Scholar 

  29. Sugiura M, Shinozaki K, Zaita N et al (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments - mapping of 11 ribosomal-protein genes. Plant Sci 44:211–217

    Google Scholar 

  30. Twigg AJ, Sherratt D (1980) Trans-complementable copy-number mutants of plasmid Col E1. Nature 283:216–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by the Biotechnology and Biological Sciences Research Council (BB/I011552/1) and a University of Manchester (investment in success award). MEH was supported by a President’s Doctoral Scholar Award (University of Manchester), MFBH by the University Malaysia Terengganu and EMA by a Biotechnology and Biological Sciences Research Council PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

El Hajj, M., Hamdan, M.F.B., Avila, E.M., Day, A. (2018). Rescue of Deletion Mutants to Isolate Plastid Transformants in Higher Plants. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 1829. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8654-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8654-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8653-8

  • Online ISBN: 978-1-4939-8654-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics