Plastids pp 253-271 | Cite as

Determination of the DNA/RNA-Associated Subproteome from Chloroplasts and Other Plastid Types

  • Maha Chieb
  • Monique Liebers
  • Fabien Chevalier
  • Silva Lerbs-Mache
  • Robert Blanvillain
  • Thomas PfannschmidtEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1829)


Plastids of plant and algae cells are of endosymbiotic origin. They possess their own genome and a sophisticated protein machinery to express it. Studies over the recent years uncovered that the regulation of plastid gene expression is highly complex involving a multiplicity of regulatory protein factors that are mostly imported from the cytosol. Proper expression of the chloroplast genome in coordination with nuclear genome was found to be absolutely essential for efficient growth and development of plants especially during early steps of photomorphogenesis, but also at later stages of the plant life cycle. Protein factors being responsible for such essential steps, therefore, are highly interesting for fundamental science as well as for industrial applications targeting crop improvement and yield increase. Nevertheless, many proteins involved in regulation of plastid gene expression are still unidentified and/or uncharacterized. This asks for appropriate methods to analyze this special subproteome. Here, we describe suitable methods that proved to be successful in the analysis of the plastid subproteome of DNA/RNA-binding proteins.

Key words

Plastid gene expression DNA-/RNA-binding proteins 2D-BN-PAGE 2D-SDS-PAGE with isoelectric focussing 


  1. 1.
    Jarvis P, Lopez-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14(12):787–802. nrm3702 [pii]. Scholar
  2. 2.
    Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18(4):186–194. Scholar
  3. 3.
    Myouga F, Akiyama K, Tomonaga Y et al (2013) The chloroplast function database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins. Plant Cell Physiol 54(2):e2. Scholar
  4. 4.
    Borner T, Aleynikova AY, Zubo YO et al (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta 1847(9):761–769. Scholar
  5. 5.
    Schmitz-Linneweber C, Lampe MK, Sultan LD et al (2015) Organellar maturases: a window into the evolution of the spliceosome. Biochim Biophys Acta 1847(9):798–808. Scholar
  6. 6.
    Wagner R, Pfannschmidt T (2006) Eukaryotic transcription factors in plastids--Bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381:62–70. Scholar
  7. 7.
    Ferro M, Brugiere S, Salvi D et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084. Scholar
  8. 8.
    Sun Q, Zybailov B, Majeran W et al (2009) PPDB, the plant proteomics database at cornell. Nucleic Acids Res 37(Database issue):D969–D974. Scholar
  9. 9.
    Schroter Y, Steiner S, Matthai K et al (2010) Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 10(11):2191–2204. Scholar
  10. 10.
    Schroter Y, Steiner S, Weisheit W et al (2014) A purification strategy for analysis of the DNA/RNA-associated sub-proteome from chloroplasts of mustard cotyledons. Front Plant Sci 5:557. Scholar
  11. 11.
    Majeran W, Friso G, Asakura Y et al (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158(1):156–189. Scholar
  12. 12.
    Melonek J, Matros A, Trosch M et al (2012) The core of chloroplast nucleoids contains architectural SWIB domain proteins. Plant Cell 24(7):3060–3073. Scholar
  13. 13.
    Lonosky PM, Zhang X, Honavar VG et al (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134(2):560–574. Scholar
  14. 14.
    Romanowska E, Drozak A, Pokorska B et al (2006) Organization and activity of photosystems in the mesophyll and bundle sheath chloroplasts of maize. J Plant Physiol 163(6):607–618. Scholar
  15. 15.
    Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 1(1):11. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maha Chieb
    • 1
  • Monique Liebers
    • 1
  • Fabien Chevalier
    • 1
  • Silva Lerbs-Mache
    • 1
  • Robert Blanvillain
    • 1
  • Thomas Pfannschmidt
    • 1
    Email author
  1. 1.Laboratoire de Physiologie Cellulaire et VégétaleCentre National de la Recherche Scientifique, Institut National Recherche Agronomique, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Grenoble, UMR5168, Université Grenoble AlpesGrenobleFrance

Personalised recommendations