Skip to main content

Primary Endosymbiosis: Emergence of the Primary Chloroplast and the Chromatophore, Two Independent Events

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1829))

Abstract

The emergence of semiautonomous organelles, such as the mitochondrion, the chloroplast, and more recently, the chromatophore, are critical steps in the evolution of eukaryotes. They resulted from primary endosymbiotic events that seem to share general features, i.e., an acquisition of a bacterium/cyanobacteria likely via a phagocytic membrane, a genome reduction coinciding with an escape of genes from the organelle to the nucleus, and finally the appearance of an active system translocating nuclear-encoded proteins back to the organelles. An intense mobilization of foreign genes of bacterial origin, via horizontal gene transfers, plays a critical role. Some third partners, like Chlamydia, might have facilitated the transition from cyanobacteria to the early chloroplast. This chapter describes our current understanding of primary endosymbiosis, with a specific focus on primary chloroplasts considered to have emerged more than one billion years ago, and on the chromatophore, having emerged about one hundred million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koskela M, Annila A (2012) Looking for the last universal common ancestor (LUCA). Genes (Basel) 3(1):81–87. https://doi.org/10.3390/genes3010081

    Article  CAS  Google Scholar 

  2. Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717. https://doi.org/10.3389/fmicb.2015.00717

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cantine MD, Fournier GP (2017) Environmental adaptation from the origin of life to the last universal common ancestor. Orig Life Evol Biosph. https://doi.org/10.1007/s11084-017-9542-5

  4. van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225. https://doi.org/10.1016/S0074-7696(05)44005-X

    Article  PubMed  Google Scholar 

  5. Gribaldo S, Poole AM, Daubin V et al (2010) The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8(10):743–752. https://doi.org/10.1038/nrmicro2426

    Article  PubMed  CAS  Google Scholar 

  6. Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG (2017) Archaea and the origin of eukaryotes. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro.2017.154

  7. Mereschkowsky C (1905) Ober Natur and Ursprung der Chromatophoren im Pflanzenreiche. Biol Zentralbl 25:593–604

    Google Scholar 

  8. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  9. Poole AM, Gribaldo S (2014) Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb Perspect Biol 6(12):a015990. https://doi.org/10.1101/cshperspect.a015990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lopez Alonso D, Garcia-Maroto F, Rodriguez-Ruiz J et al (2003) Evolutiuon of membrane-bound fatty acid desaturases. Biochem Syst Ecol 31:1111–1124

    Article  CAS  Google Scholar 

  11. Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000Prime Rep 6:40. https://doi.org/10.12703/P6-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16(7):1661–1666. https://doi.org/10.1105/tpc.160771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Morley SA, Nielsen BL (2017) Plant mitochondrial DNA. Front Biosci 22:1023–1032

    Article  CAS  Google Scholar 

  14. Wollman FA (2016) An antimicrobial origin of transit peptides accounts for early endosymbiotic events. Traffic 17(12):1322–1328. https://doi.org/10.1111/tra.12446

    Article  PubMed  CAS  Google Scholar 

  15. Timmis JN, Ayliffe MA, Huang CY et al (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135. https://doi.org/10.1038/nrg1271

    Article  PubMed  CAS  Google Scholar 

  16. Benchimol M (2009) Hydrogenosomes under microscopy. Tissue Cell 41(3):151–168. https://doi.org/10.1016/j.tice.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  17. Rosa Ide A, Einicker-Lamas M, Bernardo RR et al (2008) Cardiolipin, a lipid found in mitochondria, hydrogenosomes and bacteria was not detected in Giardia lamblia. Exp Parasitol 120(3):215–220. https://doi.org/10.1016/j.exppara.2008.07.009

    Article  PubMed  CAS  Google Scholar 

  18. Botte C, Saidani N, Mondragon R et al (2008) Subcellular localization and dynamics of a digalactolipid-like epitope in toxoplasma gondii. J Lipid Res 49(4):746–762. https://doi.org/10.1194/jlr.M700476-JLR200

    Article  PubMed  CAS  Google Scholar 

  19. Botte CY, Marechal E (2014) Plastids with or without galactoglycerolipids. Trends Plant Sci 19(2):71–78. https://doi.org/10.1016/j.tplants.2013.10.004

    Article  PubMed  CAS  Google Scholar 

  20. Botte CY, Yamaryo-Botte Y, Rupasinghe TW et al (2013) Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci U S A 110(18):7506–7511. https://doi.org/10.1073/pnas.1301251110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Petroutsos D, Amiar S, Abida H et al (2014) Evolution of galactoglycerolipid biosynthetic pathways--from cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 54:68–85. https://doi.org/10.1016/j.plipres.2014.02.001

    Article  PubMed  CAS  Google Scholar 

  22. McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2(6):513–519

    Article  CAS  PubMed  Google Scholar 

  23. Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346(6282):376–379. https://doi.org/10.1038/346376a0

    Article  PubMed  CAS  Google Scholar 

  24. Stegemann S, Hartmann S, Ruf S et al (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100(15):8828–8833. https://doi.org/10.1073/pnas.1430924100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sato N, Takano H (2017) Diverse origins of enzymes involved in the biosynthesis of chloroplast peptidoglycan. J Plant Res 130(4):635–645. https://doi.org/10.1007/s10265-017-0935-3

    Article  PubMed  CAS  Google Scholar 

  26. Reyes-Prieto A, Moustafa A (2012) Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes. Sci Rep 2:955. https://doi.org/10.1038/srep00955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Horn M, Collingro A, Schmitz-Esser S et al (2004) Illuminating the evolutionary history of chlamydiae. Science 304(5671):728–730. https://doi.org/10.1126/science.1096330

    Article  PubMed  CAS  Google Scholar 

  28. Brinkman FS, Blanchard JL, Cherkasov A et al (2002) Evidence that plant-like genes in chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12(8):1159–1167. https://doi.org/10.1101/gr.341802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ball SG, Subtil A, Bhattacharya D et al (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25(1):7–21. https://doi.org/10.1105/tpc.112.101329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8(6):R99. https://doi.org/10.1186/gb-2007-8-6-r99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Huang J, Gogarten JP (2008) Concerted gene recruitment in early plant evolution. Genome Biol 9(7):R109. https://doi.org/10.1186/gb-2008-9-7-r109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Moustafa A, Reyes-Prieto A, Bhattacharya D (2008) Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 3(5):e2205. https://doi.org/10.1371/journal.pone.0002205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cenci U, Bhattacharya D, Weber AP et al (2017) Biotic host-pathogen interactions as major drivers of plastid endosymbiosis. Trends Plant Sci 22(4):316–328. https://doi.org/10.1016/j.tplants.2016.12.007

    Article  PubMed  CAS  Google Scholar 

  34. Archibald JM, Keeling PJ (2002) Recycled plastids: a 'green movement' in eukaryotic evolution. Trends Genet 18(11):577–584 S0168-9525(02)02777-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156(4):425–432. https://doi.org/10.1016/j.protis.2005.09.001

    Article  PubMed  CAS  Google Scholar 

  36. Nowack EC, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18(6):410–418. https://doi.org/10.1016/j.cub.2008.02.051

    Article  PubMed  CAS  Google Scholar 

  37. Singer A, Poschmann G, Muhlich C et al (2017) Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr Biol 27(18):2763–2773 e2765. https://doi.org/10.1016/j.cub.2017.08.010

    Article  PubMed  CAS  Google Scholar 

  38. Mackiewicz P, Bodyl A, Gagat P (2012) Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora. Theory Biosci 131(1):1–18. https://doi.org/10.1007/s12064-011-0147-7

    Article  PubMed  CAS  Google Scholar 

  39. Mackiewicz P, Bodyl A, Gagat P (2012) Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis. Symbiosis 58(1-3):99–107. https://doi.org/10.1007/s13199-012-0202-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gagat P, Bodyl A, Mackiewicz P (2013) How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies. Biol Direct 8:18. https://doi.org/10.1186/1745-6150-8-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bodyl A, Mackiewicz P, Gagat P (2012) Organelle evolution: Paulinella breaks a paradigm. Curr Biol 22(9):R304–R306. https://doi.org/10.1016/j.cub.2012.03.020

    Article  PubMed  CAS  Google Scholar 

  42. Nowack EC, Price DC, Bhattacharya D et al (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 113(43):12214–12219. https://doi.org/10.1073/pnas.1608016113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR-13-ADAP-0008 Reglisse; ANR-10-LABEX-04 GRAL Labex, Grenoble Alliance for Integrated Structural Cell Biology; ANR-11-BTBR-0008 Océanomics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Maréchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maréchal, E. (2018). Primary Endosymbiosis: Emergence of the Primary Chloroplast and the Chromatophore, Two Independent Events. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 1829. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8654-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8654-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8653-8

  • Online ISBN: 978-1-4939-8654-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics