Skip to main content

Nusinersen in the Treatment of Spinal Muscular Atrophy

  • Protocol
  • First Online:
Book cover Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Spinal muscular atrophy (SMA) is one of the most common genetic causes of infantile death arising due to mutations in the SMN1 gene and the subsequent loss of motor neurons. With the discovery of the intronic splicing silencer N1 (ISS-N1) as a potential target for antisense therapy, several antisense oligonucleotides (ASOs) are being developed to include exon 7 in the final mRNA transcript of the SMN2 gene and thereby increasing the production of spinal motor neuron (SMN) proteins. Nusinersen (spinraza), a modified 2′-O-methoxyethyl (MOE) antisense oligonucleotide is the first drug to be approved by Food and Drug Agency (FDA) in December of 2016. Here we briefly review the pharmacological relevance of the drug, clinical trials, toxicity, and future directions following the approval of nusinersen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrar MA, Park SB, Vucic S et al (2017) Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol 81(3):355–368. https://doi.org/10.1002/ana.24864

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sardone V, Zhou H, Muntoni F et al (2017) Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules 22(4). https://doi.org/10.3390/molecules22040563

    Article  PubMed Central  Google Scholar 

  3. Kolb SJ, Kissel JT (2015) Spinal muscular atrophy. Neurol Clin 33(4):831–846. https://doi.org/10.1016/j.ncl.2015.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Taylor JE et al (1998) Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy. Eur J Hum Genet 6:8. https://doi.org/10.1038/sj.ejhg.5200210

    Article  Google Scholar 

  5. Ottesen EW (2017) ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci 8:1–6. https://doi.org/10.1515/tnsci-2017-0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. https://doi.org/10.3390/jpm3030144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh NK, Singh NN, Androphy EJ et al (2006) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346. https://doi.org/10.1128/MCB.26.4.1333-1346.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simoens S, Huys I (2017) Market access of Spinraza (Nusinersen) for spinal muscular atrophy: intellectual property rights, pricing, value and coverage considerations. Gene Ther 24:539. https://doi.org/10.1038/gt.2017.79

    Article  CAS  PubMed  Google Scholar 

  9. Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86(10):890–897. https://doi.org/10.1212/WNL.0000000000002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paton DM (2017) Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today (Barc) 53(6):327–337. https://doi.org/10.1358/dot.2017.53.6.2652413

    Article  CAS  Google Scholar 

  11. Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. https://doi.org/10.1517/14712598.2014.896335

    Article  CAS  PubMed  Google Scholar 

  12. Disterer P (2017) This is the dawning of the age of antisense. Oligonucleotide Therapeutics Society. Accessed 23 Jan 2018

    Google Scholar 

  13. Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):13. https://doi.org/10.1128/MCB.26.4.1333-1346.2006

    Article  CAS  Google Scholar 

  14. Hoy SM (2017) Nusinersen: first global approval. Drugs 77(4):473–479. https://doi.org/10.1007/s40265-017-0711-7

    Article  CAS  PubMed  Google Scholar 

  15. Touznik A, Maruyama R, Hosoki K et al (2017) LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 7(1):3672. https://doi.org/10.1038/s41598-017-03850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bob Pratt PD (2016) Risk assessment and risk mitigation review(s) FDA, Division of Risk Management (DRISK)

    Google Scholar 

  17. Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113(39):10962–10967. https://doi.org/10.1073/pnas.1605731113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multi-exon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114(16):4213–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maruyama R, Echigoya Y, Nakamura A et al (2017) Systemic injections of peptide-conjugated morpholinos improve cardiac symptoms of a dog model of duchenne muscular dystrophy. Paper presented at the molecular therapy

    Google Scholar 

  20. Osman EY, Miller MR, Robbins KL et al (2014) Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models. Hum Mol Genet 23(18):4832–4845. https://doi.org/10.1093/hmg/ddu198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Slipchuk SMA Research Fund, Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, the HM Toupin Neurological Science Research Fund, the Canadian Institutes of Health Research (CIHR), the Alberta Innovates: Health Solutions (AIHS), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education and Technology, and the Women and Children’s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goodkey, K., Aslesh, T., Maruyama, R., Yokota, T. (2018). Nusinersen in the Treatment of Spinal Muscular Atrophy. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics