Skip to main content

Pre-mRNA Splicing Modulation by Antisense Oligonucleotides

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Pre-mRNA splicing, a dynamic process of intron removal and exon joining, is governed by a combinatorial control exerted by overlapping cis-elements that are unique to each exon and its flanking intronic sequences. Splicing cis-elements are usually 4-to-8-nucleotide-long linear motifs that provide binding sites for specific proteins. Pre-mRNA splicing is also influenced by secondary and higher order RNA structures that affect accessibility of splicing cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate splicing in vivo. Therefore, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of splicing in pathological conditions. Here we describe an ASO-based approach to increase the production of the full-length SMN2 mRNA in spinal muscular atrophy patient cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  Google Scholar 

  2. Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–813

    Article  CAS  Google Scholar 

  3. Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, Ju J, Chasin LA (2011) Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 21:1360–1374

    Article  CAS  Google Scholar 

  4. Busch A, Hertel KJ (2012) HEXEvent: a database of human EXon splicing events. Nucleic Acids Res 41(database issue):D118–D124

    Article  Google Scholar 

  5. Singh NN, Singh RN, Androphy EJ (2007) Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 35:371–389

    Article  CAS  Google Scholar 

  6. Warf MB, Berglund JA (2010) Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35:169–178

    Article  CAS  Google Scholar 

  7. McManus CJ, Graveley BR (2011) RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev 21:373–379

    Article  CAS  Google Scholar 

  8. Saldi T, Cortazar MA, Sheridan RM, Bentley DL (2016) Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J Mol Biol 428:2623–2635

    Article  CAS  Google Scholar 

  9. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM (2017) Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 18(10):637–650. https://doi.org/10.1038/nrm.2017.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Irimia M, Blencowe BJ (2012) Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol 24:323–332

    Article  CAS  Google Scholar 

  11. Han H, Braunschweig U, Gonatopoulos-Pournatzis T, Weatheritt RJ et al (2017) Multilayered control of alternative splicing regulatory networks by transcription factors. Mol Cell 65:539–553

    Article  CAS  Google Scholar 

  12. Singh NN, Androphy EJ, Singh RN (2004) In vivo selection reveals features of combinatorial control that defines a critical exon in the spinal muscular atrophy genes. RNA 10:1291–1305

    Article  CAS  Google Scholar 

  13. Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26:1333–1346

    Article  CAS  Google Scholar 

  14. Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN (2009) A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 6:341–350

    Article  CAS  Google Scholar 

  15. Singh NN, Hollinger K, Bhattacharya D, Singh RN (2010) An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing. RNA 16:1167–1181

    Article  CAS  Google Scholar 

  16. Singh NN, Lawler MN, Ottesen EW, Upreti D, Kaczynski JR, Singh RN (2013) An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucleic Acids Res 41:8144–8165

    Article  CAS  Google Scholar 

  17. Solis AS, Shariat N, Patton JG (2008) Splicing fidelity, enhancers, and disease. Front Biosci 13:1926–1942

    Article  CAS  Google Scholar 

  18. Smith RM, Sadee W (2011) Synaptic signaling and aberrant RNA splicing in autism spectrum disorders. Front Synaptic Neurosci 3:1–8

    Article  CAS  Google Scholar 

  19. Singh RK, Cooper TA (2012) Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18:472–482

    Article  CAS  Google Scholar 

  20. Lewandowska MA (2013) The missing puzzle piece: splicing mutations. Int J Clin Exp Pathol 6:2675–2682

    PubMed  PubMed Central  Google Scholar 

  21. Pedrotti S, Cooper TA (2014) In brief: (mis)splicing in disease. J Pathol 233:1–3

    Article  CAS  Google Scholar 

  22. Fredericks AM, Cygan KJ, Brown BA, Fairbrother WG (2015) RNA-binding proteins: splicing factors and disease. Biomol Ther 5:893–909

    CAS  Google Scholar 

  23. Baralle D, Buratti E (2017) RNA splicing in human disease and in the clinic. Clin Sci (Lond) 131:355–368

    Article  CAS  Google Scholar 

  24. Luz FA, Brígido PC, Moraes AS, Silva MJ (2017) Aberrant splicing in cancer: mediators of malignant progression through an imperfect splice program shift. Oncology 92:3–13

    Article  CAS  Google Scholar 

  25. Cáceres EF, Hurst LD (2013) The evolution, impact properties of exonic splice enhancers. Genome Biol 14:R143

    Article  Google Scholar 

  26. Soemedi R, Cygan KJ, Rhine CL, Wang J, Bulacan C, Yang J, Bayrak-Toydemir P, McDonald J Fairbrother WG (2017) Pathogenic variants that alter protein code often disrupt splicing. Nat Genet 49:848–855

    Article  CAS  Google Scholar 

  27. Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG (2011) Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci U S A 108:11093–11098

    Article  CAS  Google Scholar 

  28. Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR (2011) Loss of exon identity is a common mechanism of human inherited disease. Genome 21:1563–1571

    Article  CAS  Google Scholar 

  29. Spitali P, Aartsma-Rus A (2012) Splice modulating therapies for human disease. Cell 148:1085–1088

    Article  CAS  Google Scholar 

  30. Havens MA, Hastings ML (2016) Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 44:6549–6563

    Article  Google Scholar 

  31. Markowitz JA, Singh P, Darras BT (2012) Spinal muscular atrophy: a clinical and research update. Pediatr Neurol 46:1–12

    Article  Google Scholar 

  32. Seo J, Howell MD, Singh NN, Singh RN (2013) Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta 1832:2180–2190

    Article  CAS  Google Scholar 

  33. Howell MD, Singh NN, Singh RN (2014) Advances in therapeutic development for spinal muscular atrophy. Future Med Chem 6(9):1081–1099

    Article  CAS  Google Scholar 

  34. Ahmad S, Bhatia K, Kannan A, Gangwani L (2016) Molecular mechanisms of Neurodegeneration in spinal muscular atrophy. J Exp Neurosci 10:39–49

    Article  CAS  Google Scholar 

  35. Singh NN, Androphy EJ, Singh RN (2004) Regulation and regulatory activities of alternative splicing of the SMN genes. Crit Rev Eukaryot Gene Expr 14:271–285

    Article  CAS  Google Scholar 

  36. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR (2008) Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82:834–848

    Article  CAS  Google Scholar 

  37. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF, Krainer AR (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478:123–126

    Article  CAS  Google Scholar 

  38. Osman EY, Yen PF, Lorson CL (2012) Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy. Mol Ther 20:119–126

    Article  CAS  Google Scholar 

  39. Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, Wilton SD, Burghes AH (2012) A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21:1625–1638

    Article  CAS  Google Scholar 

  40. Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN, Meijboom KE, Zhou H, Muntoni F, Talbot K et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113:10962–10967

    Article  CAS  Google Scholar 

  41. Valérie Robin V, Griffith G, Carter GPL, Leumann CJ, Garcia L, Goyenvalle A (2017) Efficient SMN rescue following subcutaneous Tricyclo-DNA antisense oligonucleotide treatment. Mol Ther Nucleic Acids 7:81–89

    Article  Google Scholar 

  42. Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN (2017) Activation of a cryptic 5′ splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx824

    Article  CAS  Google Scholar 

  43. Singh RN (2007) Evolving concepts on human SMN pre-mRNA splicing. RNA Biol 4:7–10

    Article  CAS  Google Scholar 

  44. Singh NN, Singh RN (2011) Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol 8:600–606

    Article  CAS  Google Scholar 

  45. Singh NN, Lee BM, Singh RN (2015) Splicing regulation in spinal muscular atrophy by a RNA structure formed by long distance interactions. Ann N Y Acad Sci 1341:176–187

    Article  CAS  Google Scholar 

  46. Singh NN, Lee BM, DiDonato CJ, Singh RN (2015) Mechanistic principles of antisense targets for the treatment of Spinal Muscular Atrophy. Future Med Chem 7:1793–1808

    Article  CAS  Google Scholar 

  47. Ottesen EW (2017) ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci 8:1–6

    Article  CAS  Google Scholar 

  48. Singh NN, Howell MD, Androphy EJ, Singh RN (2017) How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 24:520–526

    Article  CAS  Google Scholar 

  49. Singh NN, Seo J, Rahn SJ, Singh RN (2012) A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS One 7:e49595

    Article  CAS  Google Scholar 

  50. Amantana A, Iversen PL (2005) Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 5:550–555

    Article  CAS  Google Scholar 

  51. Singh NN, Androphy EJ, Singh RN (2004) An extended inhibitory content causes skipping of exon 7 of SMN2 in spinal muscular atrophy. Biochem Biophys Res Commun 315:381–388

    Article  CAS  Google Scholar 

  52. Singh NN, Seo J, Ottesen EW, Shishimorova M, Bhattacharya D, Singh RN (2011) TIA1 prevents skipping of a critical exon associated with spinal muscular atrophy. Mol Cell Biol 31:935–954

    Article  CAS  Google Scholar 

  53. Sambrook J, Fritsch EF, Maniatis T (1989) Polyacrylamide gel electrophoresis. In: Nolan C (ed) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.36–6.38

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from US National Institutes of Health (R01 NS055925, R21 NS101312) and Salsbury Endowment (Iowa State University, Ames, IA, USA) to R.N.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, N.N., Luo, D., Singh, R.N. (2018). Pre-mRNA Splicing Modulation by Antisense Oligonucleotides. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics